Featured Research

from universities, journals, and other organizations

Do Treatment Plants Effectively Remove Drugs, Hormones From Wastewater?

Date:
August 27, 2004
Source:
University Of Wisconsin-Madison
Summary:
New research shows that wastewater treatment plants that employ a combination of purifying techniques followed by reverse osmosis - a process by which water is forced through a barrier that only water can pass - do a good job of removing chemicals that may elicit health effects.

PHILADELPHIA - Given the number of human pharmaceuticals and hormones that make their way into wastewater, some people are concerned about how well treatment plants that turn sewage into reusable water remove these chemicals.

Related Articles


New research shows that wastewater treatment plants that employ a combination of purifying techniques followed by reverse osmosis - a process by which water is forced through a barrier that only water can pass - do a good job of removing chemicals that may elicit health effects.

Details were presented today (Aug. 25), at the 228th American Chemical Society meeting in Philadelphia as part of a special symposium on pharmaceuticals and personal care products in the environment.

"As the demand for water continues to increase, especially in arid areas, there's greater pressure placed on an already shrinking water supply," says Joel Pedersen, a University of Wisconsin-Madison environmental chemist, who co-authored a paper detailing this research. "More people are considering the reuse of water."

Wastewater reclamation plants - treatment plants that use additional processes to purify sewage - are already in operation. They produce water to irrigate crops, highway landscaping, golf courses and parks, as well as to be reintroduced into the ground for groundwater recharge, which ultimately could end up in drinking-water supplies.

While this treatment process has the promise to save an evaporating natural resource, Pedersen points out that little is known about just how well water-reclamation plants remove the pharmaceuticals and hormones that typically are found in sewage.

"One concern about water that comes from water-reclamation plants," says the Wisconsin scientist, "is that drugs and hormones in this water aren't removed during the treatment process."

As Pedersen explains, wastewater typically contains any number of pharmaceuticals and hormones that people have either excreted or flushed away for easy disposal. Many times, these chemical compounds remain biologically active, he says, adding that some of them, especially hormones such as estrogen, appear to significantly alter aquatic organisms.

To investigate how well reclamation plants remove potentially harmful drugs and hormones from wastewater, Pedersen and environmental scientists from the University of California Los Angeles tested the water coming out of three Californian treatment plants, two of which produced recycled water used to recharge groundwater. They looked for detectable levels of 19 contaminants, including ibuprofen, caffeine, testosterone, and drugs that lower cholesterol and inhibit seizures.

Pedersen says that the presence of these drugs and hormones in the reused wastewater would be of particular concern if the concentrations were high enough to elicit health and ecological effects. Much work still needs to be done to determine whether low levels found in wastewater are a cause for concern, he adds.

The team of scientists sampled water from all three plants both before and after the water underwent additional treatment processes. While wastewater that had undergone conventional treatment was filtered to remove larger particles, the reclamation plants used additional techniques to remove smaller particles - such as adding lime before filtration or passing water through a microfilter - and then reverse osmosis, a method by which water is forced through a semipermeable membrane that blocks the passage of other molecules.

The research shows that water-reclamation plants employing reverse osmosis do in fact remove more contaminants.

For example, the conventional treatment plant, which after initial treatment still contained detectable levels of 13 of the different contaminants under study, eliminated only five of them from the discharged water. The two reclamation plants, which had 16 and 14 different contaminants present after initial treatment, eliminated 16 and 12 of the chemical compounds, respectively.

"Conventional wastewater treatment processes don't eliminate pharmaceuticals and hormones as effectively, resulting in the release of low levels of these compounds into the environment," says Pedersen. "The more advanced processes, on the other hand, do a pretty good job at removing compounds."

Yet, exactly what these differences in contaminant removal may mean for the environment - and even human health - remains uncertain, says Pedersen.

"This is a case where the analytical chemistry is ahead of the toxicology," he says. "Right now, the ecological effects of chronic low-level exposure to many of these pharmaceuticals are unknown."


Story Source:

The above story is based on materials provided by University Of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University Of Wisconsin-Madison. "Do Treatment Plants Effectively Remove Drugs, Hormones From Wastewater?." ScienceDaily. ScienceDaily, 27 August 2004. <www.sciencedaily.com/releases/2004/08/040826085912.htm>.
University Of Wisconsin-Madison. (2004, August 27). Do Treatment Plants Effectively Remove Drugs, Hormones From Wastewater?. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2004/08/040826085912.htm
University Of Wisconsin-Madison. "Do Treatment Plants Effectively Remove Drugs, Hormones From Wastewater?." ScienceDaily. www.sciencedaily.com/releases/2004/08/040826085912.htm (accessed October 31, 2014).

Share This



More Earth & Climate News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Raw: Hawaii Lava Approaching Village Road

Raw: Hawaii Lava Approaching Village Road

AP (Oct. 30, 2014) The lava flow on the Big Island of Hawaii was 225 yards from Pahoa Village Road on Wednesday night. The lava is slowing down but still approaching the village. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Endangered Carpathian Ponies Are Making a Comeback in Poland

Endangered Carpathian Ponies Are Making a Comeback in Poland

AFP (Oct. 29, 2014) At the foot of the rugged Carpathian mountains near the Polish-Ukrainian border, ranchers and scientists are trying to protect the Carpathian pony, known as the Hucul in Polish. Duration: 02:17 Video provided by AFP
Powered by NewsLook.com
Deadly Mudslide in Sri Lanka Buries Houses

Deadly Mudslide in Sri Lanka Buries Houses

AP (Oct. 29, 2014) A mudslide triggered by monsoon rains buried scores of workers' houses at a tea plantation in central Sri Lanka on Wednesday, killing at least 10 people and leaving more than 250 missing, an official said. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins