Featured Research

from universities, journals, and other organizations

How An Insidious Mutation Fools DNA Replication

Date:
August 31, 2004
Source:
Duke University Medical Center
Summary:
Biochemists have pinpointed how a flaw in DNA that is central to mutations in cancer and aging fools the cellular enzyme that copies DNA. Their finding explains how oxidative DNA damage -- a process long believed to underlie cancers and aging -- can create permanent genetic damage.

DURHAM, N.C. -- Biochemists have pinpointed how a flaw in DNA that is central to mutations in cancer and aging fools the cellular enzyme that copies DNA. Their finding explains how oxidative DNA damage -- a process long believed to underlie cancers and aging -- can create permanent genetic damage.

The Duke University Medical Center researchers' findings were published online Aug. 22, 2004, by the journal Nature. The scientists were led by Associate Professor of Biochemistry Lorena Beese, Ph.D., and the paper's lead author was Gerald Hsu, a Duke M.D./Ph.D. student. The other co-authors are Thomas Carell and Matthias Ober of Ludwig Maximillians University in Germany. Their research was supported mainly by the National Cancer Institute.

DNA is a double stranded molecule shaped like a spiral staircase. The two strands of the spiral are linked by sequences of molecular subunits, or bases, called nucleotides. The four nucleotides -- guanine, cytosine, adenine and thymine -- naturally complement one another like puzzle pieces. In normal DNA, a guanine matches with a cytosine, and an adenine with a thymine. However, stray reactive oxidizing molecules in the cell can alter guanine to become an "8-oxoguanine" that can lead to a mismatch.

This mismatch occurs in the process of replicating DNA, which begins when the two strands unzip. A protein enzyme called DNA polymerase then works its way along one "template" strand adding nucleotides to create a new double-stranded DNA. In the replication process, the polymerase draws the DNA strand through a small "active site" -- somewhat like a spaghetti strand being drawn through a Cheerio.

Normally, this "high-fidelity" polymerase accurately adds complementary nucleotides and detects any mistakes that have been made. These mistakes or mismatches reveal themselves as malformations that distort the active site -- like kinks in the spaghetti strand that would clog the Cheerio. Such malformations trigger a repair mechanism to correct the mismatch.

The researchers' initial studies revealed that the polymerase biochemically "prefers" to mismatch an 8-oxoguanine with adenine rather than the correct cytosine. If not detected and corrected, such a mismatch leads to errors in the cell's machinery that can trigger the uncontrolled growth of cancer or the death of cells in aging. However, researchers have long known that the 8-oxoguanine-adenine mismatch seems to readily avoid detection by the polymerase.

"There have been a number of studies of the kinetics and the biochemistry of this mismatch reaction, but it was not understood why this particular lesion evaded detection as well as it does," said Beese. "It is one of a series of such oxidative lesions, but it is considered the most mutagenic, which is why we concentrated on understanding it."

In the experiments, Hsu worked with the particularly sturdy polymerase enzyme from a thermostable strain of the bacterium, Bacillus stearothermophilus, which thrives in geothermal hot springs. He crystallized this enzyme along with a DNA strand that contained an 8-oxoguanine. Because the polymerase retains the ability to synthesize DNA in the crystal, Hsu then added either the correct (cytosine) or incorrect (adenine) nucleotides and observed the results.

Using X-ray crystallography, the researchers were able to deduce with great precision the structure of the protein and the DNA in the crystal. The series of crystals they analyzed constituted snapshots of the polymerase's function as it created both accurate and mutated strands from the template.

The biochemists encountered a surprise when they analyzed the polymerase crystals with either the correct or mismatched nucleotides. "We saw that, ironically, when the polymerase binds the correct cytosine opposite 8-oxoguanine, the structure looked like DNA mispairs," said Beese. "This suggested that the enzyme would stall and not readily proceed with replication.

"But when we put in an incorrect adenine nucleotide, it looked like a normal base pair in how it interacted with the polymerase." The researchers' analyses revealed that the mismatched combination of 8-oxoguanine and cytosine was distorted, like a kink in a spaghetti strand that would jam the active site. However, the mismatched 8-oxoguanine and adenine showed no distortion so would proceed smoothly through the polymerase to be incorporated into the new DNA.

"We were able to extend the replication process to show that there were no distortions that would be detected by the polymerase. This means that the DNA would continue to replicate with this mispair, and that could potentially lead to stable incorporation of a lethal mutation," said Beese.

In further analyses, Hsu confirmed that bacterial polymerase would behave just as did the human polymerase in preferring to incorporate the mismatch and failing to recognize it. Also, they found, if the 8-oxoguanine-cytosine pair manages to pass through the polymerase, the distortion disappears, meaning that the chemically flawed guanine will persist in the DNA strand.

In further studies, Beese and her colleagues are exploring other types of DNA lesions and how they affect replication. These lesions include those caused by major carcinogens. The researchers also have developed a method to synchronize the DNA replication process, so that they can make the equivalent of X-ray crystallographic "movies" of the entire process, to better understand it.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "How An Insidious Mutation Fools DNA Replication." ScienceDaily. ScienceDaily, 31 August 2004. <www.sciencedaily.com/releases/2004/08/040831090623.htm>.
Duke University Medical Center. (2004, August 31). How An Insidious Mutation Fools DNA Replication. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2004/08/040831090623.htm
Duke University Medical Center. "How An Insidious Mutation Fools DNA Replication." ScienceDaily. www.sciencedaily.com/releases/2004/08/040831090623.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins