Featured Research

from universities, journals, and other organizations

Midwest Thunderstorm Study Points Toward Better Forecasts

Date:
October 4, 2004
Source:
National Science Foundation
Summary:
Newly documented small-scale circulations embedded in thunderstorm squall lines not only spew destructive straight-line winds, but may spawn up to 20% of all U.S. tornadoes. Remnant circulations from large thunderstorm clusters can survive for days, triggering new storm cells.

Arlington, Va. -- Newly documented small-scale circulations embedded in thunderstorm squall lines not only spew destructive straight-line winds, but may spawn up to 20% of all U.S. tornadoes. Remnant circulations from large thunderstorm clusters can survive for days, triggering new storm cells.

Scientists expect these and other findings to improve forecasts of damaging winds and heavy rain.

The results emerge from three-dimensional portraits of thunderstorms collected across the stormy Midwest in a field study coordinated by the National Center for Atmospheric Research (NCAR) in Boulder, Colo. Based just east of St. Louis, the Bow Echo and MCV Experiment (BAMEX) employed aircraft and ground-based storm chasers to document a wide range of storm types that prowled the Midwest from May to July 2003. Funding for the $4 million study was provided by the National Science Foundation (NSF), NCAR's primary sponsor.

A summary of BAMEX results will be presented on October 5 in Hyannis, Mass., at the American Meteorological Society's 22nd Conference on Severe Local Storms.

"BAMEX is beginning to yield significant results," says Cliff Jacobs, program director in NSF's division of atmospheric sciences. "The collaborative efforts of many researchers have resulted in new knowledge important to understanding severe storms and the tornadoes they often spawn."

Among the most noteworthy results:

* Size doesn't equal strength when it comes to bow echoes, the arc-shaped squall lines that produce intense straight-line winds and spawn dozens of tornadoes each year. "The greatest damage was typically observed not in the most extensive bow echoes, but in smaller ones spanning 60 miles or less," says NCAR scientist Christopher Davis, co-director of BAMEX. Within these small bows, even smaller circulations appear to focus most of the storm's destructive power and are the highest risk for tornadoes.

* Mesoscale convective vortices (MCVs)--areas of low pressure similar in strength and size to weak tropical depressions--extend through a deep layer of the atmosphere. MCVs, which can trigger several-day rounds of intense thunderstorms, tend to destabilize the atmosphere as they pull warm, moist surface air northward, spawning storm after storm as they go.

Scientists from more than a dozen colleges and universities joined NCAR and the National Oceanic and Atmospheric Administration (NOAA) for BAMEX.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Midwest Thunderstorm Study Points Toward Better Forecasts." ScienceDaily. ScienceDaily, 4 October 2004. <www.sciencedaily.com/releases/2004/10/041001091906.htm>.
National Science Foundation. (2004, October 4). Midwest Thunderstorm Study Points Toward Better Forecasts. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2004/10/041001091906.htm
National Science Foundation. "Midwest Thunderstorm Study Points Toward Better Forecasts." ScienceDaily. www.sciencedaily.com/releases/2004/10/041001091906.htm (accessed August 29, 2014).

Share This




More Earth & Climate News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Volcano Erupts on Papua New Guinea

Raw: Volcano Erupts on Papua New Guinea

AP (Aug. 29, 2014) Several communities were evacuated and some international flights were diverted on Friday after one of the most active volcanos in the region erupts. (Aug. 29) Video provided by AP
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Scientists Have Figured Out Why Rocks Move In Death Valley

Scientists Have Figured Out Why Rocks Move In Death Valley

Newsy (Aug. 28, 2014) The mystery of the moving rocks in Death Valley, California, has finally been solved. Scientists are pointing to a combo of water, ice and wind. Video provided by Newsy
Powered by NewsLook.com
Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins