Featured Research

from universities, journals, and other organizations

Stepping Into The Light: Engineer Warren Chan Uses Nanotechnology To Target Sick Cells

Date:
October 20, 2004
Source:
University Of Toronto
Summary:
In Professor Warren Chan's laboratory, nanosized quantum dots light up like multicoloured fireflies when exposed to ultraviolet light. But it’s nothing compared with how Chan’s face lights up when he talks about his goals for these microscopic particles — making it possible to detect, target and kill cancer cells.

Professor Warren Chan.
Credit: Photo Susan King

In Professor Warren Chan's laboratory, nanosized quantum dots light up like multicoloured fireflies when exposed to ultraviolet light. But it’s nothing compared with how Chan’s face lights up when he talks about his goals for these microscopic particles — making it possible to detect, target and kill cancer cells.

The 30-year-old assistant professor came to the Institute of Biomaterials and Biomedical Engineering three years ago. While completing his post-doctoral work in biomedical engineering at the University of California at San Diego, Chan was working on a project that involved finding the best way to observe how a virus infects a cell. The theory behind it is similar to how biologists track whales — they tag them with some sort of transceiver and monitor the signal.

But in the lab, trying to track viruses proved tricky. Whenever Chan put a tag — such as standard organic dyes — on the surface of a virus, he would lose the signal after three to five seconds. Along with his adviser, he started to examine quantum dots — nanoscale particles of semiconductors — as possible alternatives to the dyes. “Quantum dots were initially thought to be used for electronic circuitry,” he says. “But what we saw in the literature was that these beautiful structures had never been applied to biology.”

Under a light source, the quantum dots glow like neon signs. “Under low-power or medium-power excitation, they can last for over 48 hours without much loss of light,” Chan says. This meant that he could actually track a virus over the course of a biological process. The colour of light they emit can be changed by altering their size, with smaller dots emitting blue, green or yellow light and larger dots appearing orange, red or brown. “We can basically custom design the properties of the materials for whatever applications we need.”

Still, a major challenge remains. Quantum dots normally have a very oily surface and, like the old saying goes, oil and water don’t mix: the dots wouldn’t do well inside the water-based cellular environment. Chan is now looking for ways to modify the surface chemistry so that they interact with water-friendly molecules like proteins and DNA.

Chan is now exploring whether these structures can be used to “light up” disease in animals, with future implications in humans. “When cells are diseased, they produce a unique set of proteins on their surface. If you find a matching molecule [to those proteins], you can take whatever you want to that site,” he says. By attaching a quantum dot to a molecule that will target a specific type of cancer, for example, over time the dots will accumulate in the tumour. “As it accumulates, you see the animal light up in that particular region.”

Still, Chan cautions that there are limitations to light-based technology. “Light can only penetrate so far into the body. You can screen for surface cancers but the deeper the cancer, the harder it is to screen using quantum dots as a technique.” For example, screening for skin, breast or prostate cancer might be possible but the technology might not work for lung or colon cancer.

Chan also wants to determine where these nanostructures end up in the body and whether they are toxic. The quantum dots are made of potentially toxic heavy metals which, because of their size, can find their way into body structures that other materials can’t. “Nanotechnology has the potential to have many applications like contrast agents, biosensors and new diagnostic schemes,” says Chan. “But you have to think about the other side of it — how does your body deal with these materials because we’re going to be exposed to them on a more common basis. Right now, there is a need to handle these things carefully because we don’t understand the after-effects.”

Chan hopes that his current goal — to develop quantum dots that can target a disease site and light it up — can someday lead to an integrated system that will also use the quantum dots to bring drug therapies to the disease site. Beyond cancer, he is also exploring whether the dots could be used to detect pathogens such as malaria and HIV and he estimates that his quantum dots could be lighting up human disease within five to 10 years.


Story Source:

The above story is based on materials provided by University Of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University Of Toronto. "Stepping Into The Light: Engineer Warren Chan Uses Nanotechnology To Target Sick Cells." ScienceDaily. ScienceDaily, 20 October 2004. <www.sciencedaily.com/releases/2004/10/041020092412.htm>.
University Of Toronto. (2004, October 20). Stepping Into The Light: Engineer Warren Chan Uses Nanotechnology To Target Sick Cells. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2004/10/041020092412.htm
University Of Toronto. "Stepping Into The Light: Engineer Warren Chan Uses Nanotechnology To Target Sick Cells." ScienceDaily. www.sciencedaily.com/releases/2004/10/041020092412.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins