Featured Research

from universities, journals, and other organizations

Munching Microbes Could Cleanse Arsenic-contaminated Groundwater

Date:
October 27, 2004
Source:
University Of Illinois At Urbana-Champaign
Summary:
Microbial processes ultimately determine whether arsenic builds to dangerous levels in groundwater, say researchers at the University of Illinois at Urbana-Champaign. Remediation may be as simple as stimulating certain microbes to grow.

Senior research scientist Robert Sanford, left, and professor Craig Bethke, both in geology, have discovered "important links between the amount of organic material dissolved in the groundwater and the concentrations of sulfate and arsenic."
Credit: Photo by Kwame Ross / Courtesy of University Of Illinois At Urbana-Champaign

CHAMPAIGN, Ill. -- Microbial processes ultimately determine whether arsenic builds to dangerous levels in groundwater, say researchers at the University of Illinois at Urbana-Champaign. Remediation may be as simple as stimulating certain microbes to grow.

Related Articles


Arsenic contamination is a serious threat to human health. In the Ganges Delta of Bangladesh, for example, chronic exposure to arsenic has been linked to serious medical conditions, including hypertension, cardiovascular disease and a variety of cancers.

"The threat extends to Central Illinois, where there are very high levels of arsenic contamination in a number of wells," said Craig Bethke, a professor of geology at Illinois and corresponding author of a paper to appear in the November issue of the journal Geology. "We also discovered important links between the amount of organic material dissolved in the groundwater and the concentrations of sulfate and arsenic."

The researchers analyzed water from 21 wells at various depths in the Mahomet aquifer, a regional water supply for Central Illinois. "The Mahomet aquifer was produced by a glacier, which pulverized and homogenized the sediments," Bethke said. "As a result, arsenic sources that leach into the groundwater are pretty uniformly distributed."

Surprisingly, however, arsenic concentration varied strongly from well to well, Bethke said. "Concentrations may reach hundreds of micrograms per liter in one well – which is enough to make people very sick – but fall below detection limits in a nearby well."

The concentration of arsenic varied inversely with the concentration of sulfate, the researchers found. Methane concentration also varied with the sulfate content. "We believe this reflects the distribution of microbial populations in the aquifer system," said graduate student Matthew Kirk. "Our analyses suggest the aquifer is divided into zones of mixed microbial activity, some dominated by sulfate-reducing bacteria, others by methanogens." Sulfate-reducing bacteria will consume sulfate and reduce it into sulfide. The sulfide then reacts to precipitate arsenic, leaving little in solution.

If the sulfate-reducing bacteria run out of sulfate, methanogenic bacteria take over as the dominant metabolic force, Kirk said. Because methanogenic bacteria don't produce sulfide, there is no precipitation pathway for the arsenic, which then accumulates to high levels in the groundwater.

"In the Mahomet aquifer, the balance between the amount of organic material and the amount of sulfate that leaches into the groundwater appears to control whether the water becomes contaminated," Kirk said. "Where the supply of sulfate is high relative to organic matter, sulfate remains available and sulfate-reducing bacteria keep arsenic levels low. But, where the supply of organic matter is high relative to sulfate, the sulfate has been depleted, and arsenic may accumulate."

What does this mean to people living in Illinois?

"The majority of wells in Central Illinois belong to individual homes and farms," Bethke said. "Lacking effective water treatment and testing, private wells are more at risk of arsenic poisoning."

There is good news, however. The researchers' findings suggest that groundwater contaminated with arsenic might be easily identified and remediated.

"Unlike detecting the presence of arsenic – which generally requires a sensitive laboratory analysis – testing for sulfate is simple and straightforward," Bethke said. "If all waters containing sulfate are safe, as in our dataset, then measuring sulfate level would be an easy but reliable field test to identify safe drinking water from unsafe."

Adding sulfate to naturally contaminated groundwater might be a simple but effective method to sequester the arsenic, Kirk said. "The bacteria are already present, so all you have to do is stimulate them." Sulfate salts, he said, are inexpensive, readily soluble and easily obtained.

In addition to Bethke and Kirk, the team included UI geology professor Bruce Fouke, research scientist Robert Sanford, graduate students Jungho Park and Gusheng Jin, and Illinois State Water Survey project scientist Thomas Holm. The U.S. Department of Energy funded the work.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Munching Microbes Could Cleanse Arsenic-contaminated Groundwater." ScienceDaily. ScienceDaily, 27 October 2004. <www.sciencedaily.com/releases/2004/10/041027112310.htm>.
University Of Illinois At Urbana-Champaign. (2004, October 27). Munching Microbes Could Cleanse Arsenic-contaminated Groundwater. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2004/10/041027112310.htm
University Of Illinois At Urbana-Champaign. "Munching Microbes Could Cleanse Arsenic-contaminated Groundwater." ScienceDaily. www.sciencedaily.com/releases/2004/10/041027112310.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nervous Return to Everest a Year After Deadly Avalanche

Nervous Return to Everest a Year After Deadly Avalanche

AFP (Apr. 18, 2015) In the Himalayan town of Lukla, excitement mingles with fear as mountaineers make their way up to Everest a year after an avalanche killed 16 guides and triggered an unprecedented shut-down of the world&apos;s highest peak. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
L.A. Water Cops Remind Residents of Water Conservation

L.A. Water Cops Remind Residents of Water Conservation

Reuters - US Online Video (Apr. 18, 2015) "Water cops" in Los Angeles remind the public about water conservation methods amid California&apos;s prolonged drought. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Planet Defence Conference Tackles Asteroid Threat

Planet Defence Conference Tackles Asteroid Threat

AFP (Apr. 17, 2015) Scientists gathered at a European Space Agency (ESA) facility outside Rome this week for the Planetary Defence Conference 2015 to discuss how to tackle the potential threat from asteroids hitting Earth. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
Gulf Scarred, Resilient 5 Years After BP Spill

Gulf Scarred, Resilient 5 Years After BP Spill

AP (Apr. 17, 2015) Five years after the Deepwater Horizon spill in the Gulf of Mexico, splotches of oil still dot the seafloor and wads of tarry petroleum-smelling material hide in pockets in the marshes of Barataria Bay. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins