Featured Research

from universities, journals, and other organizations

Munching Microbes Could Cleanse Arsenic-contaminated Groundwater

Date:
October 27, 2004
Source:
University Of Illinois At Urbana-Champaign
Summary:
Microbial processes ultimately determine whether arsenic builds to dangerous levels in groundwater, say researchers at the University of Illinois at Urbana-Champaign. Remediation may be as simple as stimulating certain microbes to grow.

Senior research scientist Robert Sanford, left, and professor Craig Bethke, both in geology, have discovered "important links between the amount of organic material dissolved in the groundwater and the concentrations of sulfate and arsenic."
Credit: Photo by Kwame Ross / Courtesy of University Of Illinois At Urbana-Champaign

CHAMPAIGN, Ill. -- Microbial processes ultimately determine whether arsenic builds to dangerous levels in groundwater, say researchers at the University of Illinois at Urbana-Champaign. Remediation may be as simple as stimulating certain microbes to grow.

Related Articles


Arsenic contamination is a serious threat to human health. In the Ganges Delta of Bangladesh, for example, chronic exposure to arsenic has been linked to serious medical conditions, including hypertension, cardiovascular disease and a variety of cancers.

"The threat extends to Central Illinois, where there are very high levels of arsenic contamination in a number of wells," said Craig Bethke, a professor of geology at Illinois and corresponding author of a paper to appear in the November issue of the journal Geology. "We also discovered important links between the amount of organic material dissolved in the groundwater and the concentrations of sulfate and arsenic."

The researchers analyzed water from 21 wells at various depths in the Mahomet aquifer, a regional water supply for Central Illinois. "The Mahomet aquifer was produced by a glacier, which pulverized and homogenized the sediments," Bethke said. "As a result, arsenic sources that leach into the groundwater are pretty uniformly distributed."

Surprisingly, however, arsenic concentration varied strongly from well to well, Bethke said. "Concentrations may reach hundreds of micrograms per liter in one well – which is enough to make people very sick – but fall below detection limits in a nearby well."

The concentration of arsenic varied inversely with the concentration of sulfate, the researchers found. Methane concentration also varied with the sulfate content. "We believe this reflects the distribution of microbial populations in the aquifer system," said graduate student Matthew Kirk. "Our analyses suggest the aquifer is divided into zones of mixed microbial activity, some dominated by sulfate-reducing bacteria, others by methanogens." Sulfate-reducing bacteria will consume sulfate and reduce it into sulfide. The sulfide then reacts to precipitate arsenic, leaving little in solution.

If the sulfate-reducing bacteria run out of sulfate, methanogenic bacteria take over as the dominant metabolic force, Kirk said. Because methanogenic bacteria don't produce sulfide, there is no precipitation pathway for the arsenic, which then accumulates to high levels in the groundwater.

"In the Mahomet aquifer, the balance between the amount of organic material and the amount of sulfate that leaches into the groundwater appears to control whether the water becomes contaminated," Kirk said. "Where the supply of sulfate is high relative to organic matter, sulfate remains available and sulfate-reducing bacteria keep arsenic levels low. But, where the supply of organic matter is high relative to sulfate, the sulfate has been depleted, and arsenic may accumulate."

What does this mean to people living in Illinois?

"The majority of wells in Central Illinois belong to individual homes and farms," Bethke said. "Lacking effective water treatment and testing, private wells are more at risk of arsenic poisoning."

There is good news, however. The researchers' findings suggest that groundwater contaminated with arsenic might be easily identified and remediated.

"Unlike detecting the presence of arsenic – which generally requires a sensitive laboratory analysis – testing for sulfate is simple and straightforward," Bethke said. "If all waters containing sulfate are safe, as in our dataset, then measuring sulfate level would be an easy but reliable field test to identify safe drinking water from unsafe."

Adding sulfate to naturally contaminated groundwater might be a simple but effective method to sequester the arsenic, Kirk said. "The bacteria are already present, so all you have to do is stimulate them." Sulfate salts, he said, are inexpensive, readily soluble and easily obtained.

In addition to Bethke and Kirk, the team included UI geology professor Bruce Fouke, research scientist Robert Sanford, graduate students Jungho Park and Gusheng Jin, and Illinois State Water Survey project scientist Thomas Holm. The U.S. Department of Energy funded the work.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Munching Microbes Could Cleanse Arsenic-contaminated Groundwater." ScienceDaily. ScienceDaily, 27 October 2004. <www.sciencedaily.com/releases/2004/10/041027112310.htm>.
University Of Illinois At Urbana-Champaign. (2004, October 27). Munching Microbes Could Cleanse Arsenic-contaminated Groundwater. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2004/10/041027112310.htm
University Of Illinois At Urbana-Champaign. "Munching Microbes Could Cleanse Arsenic-contaminated Groundwater." ScienceDaily. www.sciencedaily.com/releases/2004/10/041027112310.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com
Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com
Indictments in West Virginia Chemical Spill Case

Indictments in West Virginia Chemical Spill Case

AP (Dec. 17, 2014) A grand jury indicted four former executives of Freedom Industries, the company at the center of the Jan. 9, 2014 chemical spill in Charleston, West Virginia. The spill contaminated the Elk River and the water supply of 300,000 people. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins