Featured Research

from universities, journals, and other organizations

Mouse Study: Signal Overload In Alzheimer Brains

Date:
November 4, 2004
Source:
Johns Hopkins Medical Institutions
Summary:
In studies with mice that develop the equivalent of Alzheimer's disease that runs in families, Johns Hopkins researchers have shown that brain cells' signals confuse the movement of implanted neuronal stem cells.

In studies with mice that develop the equivalent of Alzheimer's disease that runs in families, Johns Hopkins researchers have shown that brain cells' signals confuse the movement of implanted neuronal stem cells.

The observation reinforces the idea that disease can create "microenvironments" that affect the behavior of cells. These local environments might help recruit stem cell-based therapies in other conditions, say the researchers. The findings are to be presented Oct. 25 at the annual meeting of the Society for Neuroscience by first author Zhiping Liu, Ph.D., a research associate in pathology.

"In normal adult mice, stem cells taken from the olfactory bulb returned to the olfactory bulb -- they returned to where they belong -- even though they had come from a different mouse," says Lee Martin, Ph.D., associate professor of pathology and neuroscience at Hopkins. "In mice with Alzheimer's disease, the stem cells went all over the place within the brain, responding to a multitude of signals whose identities we don't even know."

Remarkably, Martin says, the stem cells were attracted to the abnormal protein bundles called amyloid plaques that cause Alzheimer's, possibly opening the door to delivering some sort of plaque-buster. Because Alzheimer's is characterized by a relatively global loss of brain cells, rather than loss of a particular group of cells, stem cells themselves aren't as likely to be beneficial as in diseases where the loss is focused, such as amyotrophic lateral sclerosis and Parkinson's disease.

The olfactory bulb, the center of smell detection, houses numerous primitive stem cells that normally feed the constant, life-long regeneration of odor-detecting nerves. Because they are found in a fairly accessible region of the brain and could conceivably be removed from a person's olfactory bulb without causing permanent damage, adult olfactory bulb stem cells are a potential non-embryonic source for cells that could prove useful in replacing nerve cells lost due to injury or diseases like ALS and Parkinson's.

The mice in the study were actually serving as controls for a study of stem cells in mice that develop amyotrophic lateral sclerosis, to see how the stem cells behaved in other models of neurodegenerative diseases.

The research was funded by the ALS Association.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Mouse Study: Signal Overload In Alzheimer Brains." ScienceDaily. ScienceDaily, 4 November 2004. <www.sciencedaily.com/releases/2004/10/041030152331.htm>.
Johns Hopkins Medical Institutions. (2004, November 4). Mouse Study: Signal Overload In Alzheimer Brains. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2004/10/041030152331.htm
Johns Hopkins Medical Institutions. "Mouse Study: Signal Overload In Alzheimer Brains." ScienceDaily. www.sciencedaily.com/releases/2004/10/041030152331.htm (accessed August 22, 2014).

Share This




More Health & Medicine News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins