Featured Research

from universities, journals, and other organizations

Longterm Immune Memory Cells Cells Do Not Develop During Chronic Viral Infections

Date:
November 12, 2004
Source:
Emory University Health Sciences Center
Summary:
Immune T cells that respond to chronic viral infections do not acquire the same "memory" capabilities of T cells that respond to acute viral infections, according to research by scientists at Emory University. The finding may explain why people lose their immunity to some viruses after chronic infections are controlled.

Immune T cells that respond to chronic viral infections do not acquire the same "memory" capabilities of T cells that respond to acute viral infections, according to research by scientists at Emory University. The finding may explain why people lose their immunity to some viruses after chronic infections are controlled. It could guide scientists in developing better therapeutic combinations of antiviral therapies and therapeutic vaccines. The research is published online in the Proceedings of the National Academy of Sciences.

Lead author of the study is E. John Wherry, PhD, postdoctoral fellow in the Department of Microbiology and Immunology at Emory University School of Medicine and the Emory Vaccine Center. Senior author is Rafi Ahmed, PhD, director of the Emory Vaccine Center, Georgia Research Alliance Eminent Scholar, and professor of microbiology and immunology.

The immune system responds to viral infections in two ways: with antibodies that help prevent viruses from entering cells and with T cells activated in response to viral antigens. T cells kill the virus-infected cells and produce proteins called cytokines that prevent the growth of viruses and make cells resistant to viral infection. During the acute phase of a viral infection, activated CD8 T cells respond aggressively for a few weeks, then about five percent of them become "memory cells" that maintain a stable memory T cell population by slow, steady turnover. These memory cells are poised to mount an even stronger and more rapid response to future attacks by the same virus. Individuals who acquire immunity to diseases such as measles, yellow fever, smallpox, or polio, either through exposure or vaccination, often are capable of retaining that immunity for many years or for an entire lifetime.

Dr. Ahmed and his colleagues discovered in previous research that following acute viral infections, immune memory CD8 T cells continue to maintain their ability to attack viruses even when they are not continuously stimulated by viral antigen (Science, Nov. 12, 1999). Other studies have suggested, however, that during some chronic infections continuing exposure to viral antigen may be necessary to maintain protective immunity.

The Emory researchers used a mouse model of infection with lymphocytic choriomeningitis virus (LCMV) to study the differences in CD8 memory T cell immune response following acute and chronic infections. In mice with the acute infection, the virus was cleared by a CD8 T cell immune response within one week. In mice with the chronic infection, high virus levels were present in multiple tissues for the first two to three months, then the virus was controlled in most tissues by a T cell response but was not completely eliminated.

To directly compare the memory capabilities of cells from both types of infection, the scientists transferred both acute memory and chronic memory CD8 T cells into uninfected mice, without transferring any of the viral antigen. The acute memory cells were maintained through homeostasis and divided several times, but the chronic memory cells failed to divide and declined in number over time. When the chronic memory CD8 T cells were transferred back into chronically infected mice where they re-encountered antigen, the cells began to recover.

The scientists also compared other important qualities of memory T cells, including the responsiveness to cytokine signaling by interleukin 7 (IL-7) and interleukin 15 (IL-15). Response to these cytokines is a critical part of the immune pathway that allows memory CD8 T cells to undergo homeostatic division and to persist even in the absence of viral antigen. They found that chronic memory CD8 T cells responded poorly to both IL-7 and IL-15, whereas acute memory CD8T cells proliferated in response to both cytokines. Additional research could show whether the defect in chronic memory cell response to IL-7 and IL-15 can be overcome by increasing the expression of these cytokines, or whether other deficiencies in the pathway exist.

"The normal memory CD8 T cell differentiation program that occurs after acute infection results in memory cells that are capable of long-term persistence in the absence of antigen as a result of slow homeostatic proliferation in response to IL-7 and IL-15," said Dr. Ahmed. "We have shown that during chronic LCMV infection this memory pathway does not proceed efficiently and that virus-specific CD8 T cells do not acquire the cardinal property of antigen-independent persistence."

The Emory scientists also concluded that rest from antigen exposure is an important criterion for developing long-term immune memory. Acute memory T cells are exposed to antigen for a finite time period after an acute infection, then after the virus with antigen is eliminated, these cells differentiate into memory T cells. A recent study of HIV infection showed that if antiretroviral therapy is initiated during the early phase of infection, HIV-specific CD8 T cells are maintained more efficiently.

"Our research shows that prolonged exposure to antigen without any rest results in cells that are "addicted" to antigen and cannot persist without it," Dr. Ahmed explains. "This raises concerns about vaccine strategies that use persisting antigen, because antigen-independent memory T cells may not develop."

The study may help explain the loss of T cell immunity seen in some chronic infections that are eventually controlled and eliminated, and the ability of some persistent tumors to provide protection from a secondary tumor challenge if the original tumor is not removed.

"Giving T cells a rest by terminating exposure to viral antigen simulation following the acute phase of infection seems to be necessary if T cells are to differentiate into long-term antigen-independent memory T cells," Dr. Ahmed says. "Therapeutic vaccine approaches that provide antigen re-stimulation during persistent infections may not allow the ability for memory T-cell proliferation. However, antiviral therapy or cancer chemotherapy may provide rest from antigen stimulation and allow partial recovery of some memory T cell functions. By combining drug treatment with therapeutic vaccination or cytokine therapies we may be able to prevent loss of T cell memory and establish long-term protective immunity."


Story Source:

The above story is based on materials provided by Emory University Health Sciences Center. Note: Materials may be edited for content and length.


Cite This Page:

Emory University Health Sciences Center. "Longterm Immune Memory Cells Cells Do Not Develop During Chronic Viral Infections." ScienceDaily. ScienceDaily, 12 November 2004. <www.sciencedaily.com/releases/2004/11/041108015330.htm>.
Emory University Health Sciences Center. (2004, November 12). Longterm Immune Memory Cells Cells Do Not Develop During Chronic Viral Infections. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2004/11/041108015330.htm
Emory University Health Sciences Center. "Longterm Immune Memory Cells Cells Do Not Develop During Chronic Viral Infections." ScienceDaily. www.sciencedaily.com/releases/2004/11/041108015330.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Ministers and Experts Meet to Discuss Ebola Reponse

EU Ministers and Experts Meet to Discuss Ebola Reponse

AFP (Sep. 15, 2014) The European Commission met on Monday to coordinate aid that the EU can offer to African countries affected by the Ebola outbreak. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
Despite The Risks, Antibiotics Still Overprescribed For Kids

Despite The Risks, Antibiotics Still Overprescribed For Kids

Newsy (Sep. 15, 2014) A new study finds children are prescribed antibiotics twice as often as is necessary. Video provided by Newsy
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Respiratory Virus Spreads To Northeast, Now In 21 States

Respiratory Virus Spreads To Northeast, Now In 21 States

Newsy (Sep. 14, 2014) The respiratory virus Enterovirus D68, which targets children, has spread from the Midwest to 21 states. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins