Featured Research

from universities, journals, and other organizations

Researchers Find Color Sensitive Atomic Switch In Bacteria

Date:
November 12, 2004
Source:
University Of Texas Medical School At Houston
Summary:
Researchers using extremely high resolution imaging have found an atomic switch capable of discriminating color in a bacterial membrane protein.

HOUSTON – (Sept. 30, 2004) – Researchers using extremely high resolution imaging have found an atomic switch capable of discriminating color in a bacterial membrane protein.

Related Articles


In a paper posted today on Science Express, the rapid advance publication page of Science, scientists from The University of Texas Medical School at Houston and the University of California , Irvine , describe the versatile light-sensing protein at levels of resolution smaller than a nanometer – one billionth of a meter.

“High-resolution X-ray crystallography revealed the light-absorbing part of the protein was present in two alternative positions, suggesting to us that light of different colors drives this protein back and forth between two differently colored states of the protein,” said corresponding author John L. Spudich, Ph.D., director of the Center for Membrane Biology in the UT Medical School Department of Biochemistry and Molecular Biology.

“Chemical analysis and spectroscopic methods then proved that the switch, buried in the middle of this membrane-embedded protein, similar in structure to our visual pigments, is controlled by blue versus orange photon absorption.” Spudich said.

That function makes the protein novel among its family of light-sensing proteins known as rhodopsins, which are present in microbes and higher animals. In human eyes, rhodopsin is the light-absorbing pigment of the rods, located in the retina.

The team studied a new-found rhodopsin on the surface membrane of the bacterium Anabaena, classified as “blue-green algae” or cyanobacteria, which rely on photosynthesis to generate energy.

Having a single sensory protein capable of distinguishing color would provide Anabaena with information about the color of light available in its environment, enabling more efficient harvesting of light for photosynthesis, Spudich said.

“Understanding rhodopsins helps us understand the large number of related membrane receptors involved in cell signaling that govern biological functions,” Spudich said. In the longer term, the novel protein found in Anabaena has the potential to be used in nano-machinery as a color-sensor; however the authors point out that this practical application is years in the future.

First author of the paper is Lutz Vogeley, a graduate student in the UC Irvine Department of Molecular Biology and Biochemistry. Senior authors are Dr. Spudich and Dr. Hartmut Luecke, Ph.D., professor of molecular biology and biochemistry and of physiology and biophysics at UC-Irvine. Co-authors include Oleg Sineshchekov, Ph.D., of Moscow State University in Russia, and visiting professor in the UT Center for Biology, and research fellow Vishwa Trivedi, Ph.D., and Jun Sasaki, Ph.D., assistant professor, both of the UT Center for Membrane Biology.

“One of the key frontiers of biomedical science in the genomic era is the crucial role of cell membranes in normal cell function and disease states,” said Spudich, who holds the Robert A. Welch Distinguished Chair in Chemistry and is a professor in the UT Graduate School of Biomedical Sciences. “Ask virtually any investigator and you'll find his or her research program bumps up against a membrane.”

Cell membrane surfaces and their exposed proteins are the most accessible targets to treat human tissue or destroy infectious microbes, he said. More than 60 percent of medications target membrane proteins on human cells and many antibiotics target membranes on pathogens.


Story Source:

The above story is based on materials provided by University Of Texas Medical School At Houston. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Medical School At Houston. "Researchers Find Color Sensitive Atomic Switch In Bacteria." ScienceDaily. ScienceDaily, 12 November 2004. <www.sciencedaily.com/releases/2004/11/041108022203.htm>.
University Of Texas Medical School At Houston. (2004, November 12). Researchers Find Color Sensitive Atomic Switch In Bacteria. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2004/11/041108022203.htm
University Of Texas Medical School At Houston. "Researchers Find Color Sensitive Atomic Switch In Bacteria." ScienceDaily. www.sciencedaily.com/releases/2004/11/041108022203.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins