Featured Research

from universities, journals, and other organizations

Designing An Ultrasensitive 'Optical Nose' For Chemicals

Date:
November 19, 2004
Source:
National Institute Of Standards And Technology
Summary:
A laser-based method for identifying a single atom or molecule hidden among 10 trillion others soon may find its way from the laboratory to the real world.

Schematic drawing of the optical nose components.
Credit: Image courtesy of Vescent Photonics

A laser-based method for identifying a single atom or molecule hidden among 10 trillion others soon may find its way from the laboratory to the real world.

Developed by physicists at the National Institute of Standards and Technology (NIST), the technique is believed to be more than 1,000 times more sensitive than conventional methods. Vescent Photonics of Denver, Colo., hopes to commercialize the method as an "optical nose" for atmospheric monitoring. The portable sensors would rapidly identify chemicals in a gas sample based on the frequencies of light they absorb. Other applications eventually may include detection of chemical weapons and land mines, patient breath analysis for medical diagnosis or monitoring, and industrial detection of leaks in subterranean pipes or storage tanks, the company says.

Vescent recently signed a Cooperative Research and Development Agreement with NIST. The company will work with NIST physicist Jun Ye (co-developer of the technology) to apply the public domain "optical nose" technique to detecting and quantifying trace quantities of atmospheric gases. Ye works at JILA, a joint institute of NIST and the University of Colorado at Boulder.

The technique is a product of years of work and several innovations by NIST scientists. A gas sample is placed in an optical cavity containing two highly reflective mirrors. An infrared laser beam is directed into the cavity, where the light bounces back and forth many times. The repeated reflections increase the path length on which laser light will interact with gas molecules in the sample. In addition, the laser frequency is quickly and systematically varied in a way that enables scientists to observe and subtract background noise from the signal.

The approach allows analysis of gases that are present in minute concentrations and at very low pressures, which may enable identification of compounds such as explosives that are difficult to detect by other means.


Story Source:

The above story is based on materials provided by National Institute Of Standards And Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute Of Standards And Technology. "Designing An Ultrasensitive 'Optical Nose' For Chemicals." ScienceDaily. ScienceDaily, 19 November 2004. <www.sciencedaily.com/releases/2004/11/041117001616.htm>.
National Institute Of Standards And Technology. (2004, November 19). Designing An Ultrasensitive 'Optical Nose' For Chemicals. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2004/11/041117001616.htm
National Institute Of Standards And Technology. "Designing An Ultrasensitive 'Optical Nose' For Chemicals." ScienceDaily. www.sciencedaily.com/releases/2004/11/041117001616.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins