Featured Research

from universities, journals, and other organizations

Birds, Butterflies, Bacteria: Same Law Of Biology Appears To Apply

Date:
December 14, 2004
Source:
University Of Washington
Summary:
The connection between species richness and area occupied, recognized by biologists for more than a hundred years as a fundamental ecological relationship in plant and in animal communities, has been discerned for the first time at the microbial level.

The connection between species richness and area occupied, recognized by biologists for more than a hundred years as a fundamental ecological relationship in plant and in animal communities, has been discerned for the first time at the microbial level.

A pair of papers in the Dec. 9 issue of the journal Nature, one focused on bacteria and another on a microbial fungi, shows that the number of species present – the diversity – increases as the area they occupy increases.

"The results suggest that this relationship may be a universal law common to all domains of life," say Claire Horner-Devine, University of Washington assistant professor of aquatic and fishery sciences and lead author of the paper concerning bacteria. Jessica Green, University of California, Merced, assistant professor of natural sciences, is lead author of the other.

If true of other microbes, the work will give ecologists new ways of understanding the ecology and biodiversity of these tiny organisms, most of which are too small to see even with microscopes, Horner-Devine and Green say. Bacteria and fungi may well comprise the bulk of species on Earth and, despite their small size, play roles in everything from global climate change to water purification to recycling of dead plants, animals and other matter.

"Bacteria, for example, decompose organic material that, among other things, provides the majority of nitrogen needed by the plants we eat," Horner-Devine says. "So understanding the distribution and basic ecology of one of the most abundant and diverse groups of organisms on Earth is crucial."

The idea that the number of species increases as the area increases -– referred to as the "species-area relationship" -– may seem obvious to anyone who has, say, compared a garden-size patch of wildflowers to an entire meadow and realized how many more kinds of flowers there are in the latter, Horner-Devine says. Still, some scientists thought microbes might be different.

"There has been a long standing idea that microbes are so abundant and so small that all the different types of bacteria are mixed up all the time and are, therefore, randomly distributed," says Jennifer Hughes of Brown University, a co-author on the bacteria paper, along with Melissa Lage of Brown and Brendan Bohannan of Stanford University. Horner-Devine was a graduate student at Stanford before joining the University of Washington this fall.

The groups took advantage of existing distance-decay formulas: mathematical formulas previously developed for plant and animal communities that describe how many more types, or species, can be expected to be shared from two samples taken far apart – say at opposite ends of a field or a lake – than from two samples taken close together.

The researchers were the first to couple this ecological thinking with information about microbes found using molecular tools developed in just the last 10 years, Horner-Devine says. Because it is so difficult to determine exact species of microorganisms, the researchers looked for DNA, or pieces of DNA, and compared that to tell different "types" apart.

It's a different taxonomic resolution than species, Green says, but it is a consistent measure of community composition. Green and her co-authors sampled the microbial fungi Ascomycota in desert soils of a 62-square-mile national park in Australia. The Horner-Devine paper was based on bacteria sampled across a half-acre in a New England salt marsh.

The studies span different microbial taxa, habitats, continents, molecular techniques and spatial scales, leading Green to say, "Our data firmly establishes that like plants and animals, microbes are not randomly distributed but rather exhibit spatially predictable, aggregated patterns at multiple spatial scales."

This result has big implications, says Hughes. "If the composition of bacteria is different in different places, then they might be performing these functions differently. For example, a salt marsh in Rhode Island may behave differently in terms of how it buffers Narragansett Bay from nitrogen pollution than a similar looking marsh in San Francisco Bay."

Both studies received funding from the National Science Foundation. The bacteria work also was supported the American Association of University Women, and the fungi work by the Australian Research Council and the New South Wales Resource and Conservation Assessment Council.

"The search for generalities has been especially challenging in ecology," says Stanford's Bohannan. "This work supports the idea that the species-area relationship is a truly general pattern, applying to elephants and bacteria and everything in between."


Story Source:

The above story is based on materials provided by University Of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University Of Washington. "Birds, Butterflies, Bacteria: Same Law Of Biology Appears To Apply." ScienceDaily. ScienceDaily, 14 December 2004. <www.sciencedaily.com/releases/2004/12/041208235029.htm>.
University Of Washington. (2004, December 14). Birds, Butterflies, Bacteria: Same Law Of Biology Appears To Apply. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2004/12/041208235029.htm
University Of Washington. "Birds, Butterflies, Bacteria: Same Law Of Biology Appears To Apply." ScienceDaily. www.sciencedaily.com/releases/2004/12/041208235029.htm (accessed August 29, 2014).

Share This




More Plants & Animals News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Huge Ancient Wine Cellar Found In Israel

Huge Ancient Wine Cellar Found In Israel

Newsy (Aug. 28, 2014) An international team uncovered a large ancient wine celler that likely belonged to a Cannonite ruler. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins