Featured Research

from universities, journals, and other organizations

Going To Extremes: Pulsar Gives Insight On Ultra Dense Matter And Magnetic Fields

Date:
December 29, 2004
Source:
Chandra X-ray Center
Summary:
A long look at a young pulsar with NASA's Chandra X-ray Observatory revealed unexpectedly rapid cooling, which suggests that it contains much denser matter than previously expected. The pulsar's cool temperature and the vast magnetic web of high-energy particles that surrounds it have implications for the theory of nuclear matter and the origin of magnetic fields in cosmic objects.

Close-up of Torus.
Credit: Image courtesy of Chandra X-ray Center

A long look at a young pulsar with NASA's Chandra X-ray Observatory revealed unexpectedly rapid cooling, which suggests that it contains much denser matter than previously expected. The pulsar's cool temperature and the vast magnetic web of high-energy particles that surrounds it have implications for the theory of nuclear matter and the origin of magnetic fields in cosmic objects.

An international team of scientists used the Chandra data to measure the temperature of the pulsar at the center of 3C58, the remains of a star observed to explode in the year 1181. Chandra's image of 3C58 also shows spectacular jets, rings and magnetized loops of high-energy particles generated by the pulsar.

"We now have strong evidence that, in slightly more than 800 years, the surface of the 3C 58 pulsar has cooled to a temperature of slightly less than a million degrees Celsius," said Patrick Slane of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and lead author on a paper describing these results in the November 20, 2004 issue of The Astrophysical Journal. "A million degrees may sound pretty hot, but for a young neutron star that's like the frozen tundra in Green Bay, Wisconsin."

Pulsars are formed when the central core of a massive star collapses to create a dense object about 15 miles across that is composed almost entirely of neutrons. Collisions between neutrons and other subatomic particles in the interior of the star produce neutrinos that carry away energy as they escape from the star. This cooling process depends critically on the density and type of particles in the interior, so measurements of the surface temperature of pulsars provide a way to probe extreme conditions where densities are so high that our current understanding of how particles interact with one another is limited. They represent the maximum densities that can be attained before the star collapses to form a black hole.

The relatively cool temperature of the 3C58 pulsar, combined with evidence from the Vela pulsar and other young neutron stars, points to rapid cooling due to unexpected conditions in the neutron stars. One possibility is that more protons than expected survived the crush to neutron star densities, or perhaps an exotic form of sub-nuclear particles is responsible for more rapid cooling.

Surrounding the pulsar is a bright doughnut-shaped, or toroidal, structure, with jet-like features extending in a perpendicular direction away from the torus. These features, which are due to radiation from extremely high energy particles produced by the pulsar, show a strong resemblance to the rings and jets around the Crab pulsar.

Chandra images of the 3C58, Crab, and a growing list of other pulsars provide dramatic proof that strong electromagnetic fields around rapidly rotating neutron stars are powerful generators of high-energy particles. One of the more intriguing implications of these results is that pulsars can spin magnetic fields as well as high-energy particles far out into space.

The intricate structure of X-ray loops visible in the Chandra image and radio images of 3C58 in the nebula that extends a dozen light years from the pulsar likely represents the complex magnetic field structure there. Detailed analysis and comparison of these structures with those seen in the Crab Nebula and other pulsars should help astrophysicists to better understand how magnetic fields are produced by pulsars, and on a much larger scale by disks of matter swirling into supermassive black holes in galaxies.

Chandra observed 3C58, which is about 10,000 light years from Earth, for almost 100 hours between April 22-26, 2003, with its Advanced CCD Imaging Spectrometer instrument. Other members of the research team were David Helfand (Columbia University), Eric van der Swaluw (FOM Institute of Plasma Physics, the Netherlands), and Stephen Murray (Harvard-Smithsonian Center for Astrophysics).

###

NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.


Story Source:

The above story is based on materials provided by Chandra X-ray Center. Note: Materials may be edited for content and length.


Cite This Page:

Chandra X-ray Center. "Going To Extremes: Pulsar Gives Insight On Ultra Dense Matter And Magnetic Fields." ScienceDaily. ScienceDaily, 29 December 2004. <www.sciencedaily.com/releases/2004/12/041220002807.htm>.
Chandra X-ray Center. (2004, December 29). Going To Extremes: Pulsar Gives Insight On Ultra Dense Matter And Magnetic Fields. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2004/12/041220002807.htm
Chandra X-ray Center. "Going To Extremes: Pulsar Gives Insight On Ultra Dense Matter And Magnetic Fields." ScienceDaily. www.sciencedaily.com/releases/2004/12/041220002807.htm (accessed July 23, 2014).

Share This




More Space & Time News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, July 18, 2014

This Week @ NASA, July 18, 2014

NASA (July 18, 2014) Apollo 11 yesterday, Next Giant Leap tomorrow, Science instruments for Europa mission, and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins