Featured Research

from universities, journals, and other organizations

Researchers Control Chemical Reactions One Molecule At A Time

Date:
December 30, 2004
Source:
University Of California - Riverside
Summary:
Scientists at the University of California, Riverside showed that L. P. Hammett's 1937 prediction of the strength of different acids is directly transferable to the activation of individual molecules on metal surfaces using the tip of a scanning tunneling microscope (STM) as a nanoscale actuator.

Benzenethiol under an STM.
Credit: Image courtesy of University Of California - Riverside

Scientists at the University of California, Riverside showed that L. P. Hammett's 1937 prediction of the strength of different acids is directly transferable to the activation of individual molecules on metal surfaces using the tip of a scanning tunneling microscope (STM) as a nanoscale actuator.

Related Articles


Hammett's original prediction is a cornerstone of physical organic chemistry, which laid the foundation for many quantitative structure activity relationships that are now widely used in fields such as drug design and environmental toxicology.

Ludwig Bartels, an assistant professor of chemistry at UCR, used an STM to demonstrate that Hammett's concepts still hold true at a scale where molecules are individually guided one at a time and step-by-step through a chemical reaction.

An STM acquires the height profile of a surface at the atomic scale by guiding a needle across the surface in a process similar to how a blind person reads Braille. The dots it can resolve are no larger than individual atoms or molecules. Thus, it enables scientists to see images of individual atoms and molecules on metal and semiconductor surfaces. The same needle tip used for scanning can inject tailored electrical pulses into molecules that render portions of them reactive by modifying their chemical make up.

Bartels led a team of researchers whose findings are published in this week's issue of the Proceedings of the National Academies of Science in a paper titled Measurement of a Linear Free Energy Relationship One Molecule at a Time. Co-authors with Bartels are UCR graduate student Ki-Young Kwon, who performed the data analysis and interpretation, as well as UCR postdoctoral researchers Bommisetty Rao, who performed the bulk of the experiments, and Anwei Liu, who developed the Scanning Tunneling Microscope used for the experiments.

In detail, Bartels and his team found that identical electrical pulses activate the thiol group of benzenethiol molecules more or less readily depending on the nature and the position of substituents (such as bromine atoms or methyl moieties) on their benzene ring.

The activity of thiol groups is used to anchor molecules to metal electrodes in virtually all molecular electronics schemes proposed so far. The benzenethiols used in Bartels' study comprise a good model system for molecules used in molecular electronics and these findings may support future nanoscale assembly of "molectronic" devices - using molecular systems in electronics instead of silicon.

In 2000, researchers - including UCR's Bartels - found that the STM can assemble individual biphenyl molecules from elementary building blocks (iodobenzene) by a sequence of activation of the building blocks and transfer of the activated blocks to close proximity so that they can bind to one another chemically. But because scientists lacked control of the activation of potential building blocks, little progress has been made toward the assembly of larger and more useful molecules.

The new technique now shows how scientists can fine-tune the reactivity of groups of molecules.

"Ultimately, this may guide us how we can modify the linking groups in our starting molecules so that we can activate them separately, which will then allow us to activate one group, attach another molecule and, after that is accomplished, activate another group, so that we can attach a third molecule, and so on...," Bartels said.

The new finding offers a route to the design of building blocks whose reactivity is tailored to optimize the atomic-scale construction of complex and functional molecules on surfaces.


Story Source:

The above story is based on materials provided by University Of California - Riverside. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - Riverside. "Researchers Control Chemical Reactions One Molecule At A Time." ScienceDaily. ScienceDaily, 30 December 2004. <www.sciencedaily.com/releases/2004/12/041220005223.htm>.
University Of California - Riverside. (2004, December 30). Researchers Control Chemical Reactions One Molecule At A Time. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2004/12/041220005223.htm
University Of California - Riverside. "Researchers Control Chemical Reactions One Molecule At A Time." ScienceDaily. www.sciencedaily.com/releases/2004/12/041220005223.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Reuters - News Video Online (Jan. 25, 2015) In a glow of bonhomie, U.S. President Barack Obama and Indian Prime Minister Narendra Modi unveil a deal aimed at unlocking billions of dollars in nuclear trade. Pavithra George reports. Video provided by Reuters
Powered by NewsLook.com
NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins