Featured Research

from universities, journals, and other organizations

To Understand Earth's Magnetic Field, Wisconsin Scientists Study Ball Of Molten Metal

Date:
January 10, 2005
Source:
National Science Foundation
Summary:
In an underground bunker that brushes up against a barnyard on one side and a cornfield on the other, scientists from the University of Wisconsin, Madison, are trying to solve an enduring cosmic mystery: how does the Earth generate its magnetic field—the vast, invisible web that shapes the aurora, makes compass needles point north, and shields us from solar storms?

University of Wisconsin physicist Cary Forest with a prototype of the Madison Dynamo Experiment. In the full experiment, the one-meter wide, stainless steel shell is filled with molten sodium metal. (The prototype used water.) The metal, in turn, is stirred by two motor-driven, opposing propellers so that its motions simulate the natural, magnetic field-generating dynamos inside the Earth's core.
Credit: Jeff Miller

Madison, Wis. -- In an underground bunker that brushes up against a barnyard on one side and a cornfield on the other, scientists from the University of Wisconsin, Madison, are trying to solve an enduring cosmic mystery: how does the Earth generate its magnetic field—the vast, invisible web that shapes the aurora, makes compass needles point north, and shields us from solar storms? And how do similar fields get generated in almost every other planet in our solar system, as well as in the Sun, other stars, and even entire galaxies?

Their tool is the Madison Dynamo Experiment, a newly operational laboratory model of the Earth's molten core. Five years in the making, with support provided jointly by the National Science Foundation (NSF) and the Department of Energy, the experiment is the largest of half a dozen such efforts worldwide. And like all the others, says UW physicist Cary Forest, principal investigator on the project, it is designed to fill in some gaping holes in our understanding.

Theory has it that magnetic fields tend to arise spontaneously in any rotating, electrically conducting fluid, explains Forest, whether that fluid is the molten iron in the Earth's deep interior or the multi-million-degree plasma at the center of the Sun. But empirical evidence is much harder to come by, given that no one has yet figured out how to stick a probe into the core of the Earth, or into the heart of a star.

Thus the gaps. Says Forest, "How fast do the naturally occurring magnetic fields grow? When do they stop growing? What causes them to stop growing? That's the big one. These are really, really fundamental questions that theory doesn't address."

And thus the Madison Dynamo Experiment. At its heart is a one-meter-wide, stainless steel sphere that contains about a ton of sodium metal, which serves as the conducting fluid. Sodium metal is a dull, silvery substance that has the consistency of soft cheese at room temperature, and a dangerous habit of reacting violently with moisture and many other things. But sodium also has the advantage of melting at the comparatively low temperature of 98 degrees centigrade, or 208 degrees Fahrenheit, above which it flows like water. (Iron, by contrast, doesn’t melt until 1538 degrees centigrade, or 2800 degrees Fahrenheit.)

When the experiment is in operation, two opposing propellers stir the molten sodium in ways that approximate the flow of molten iron inside the Earth.

"At the core of the Earth, it is thought that there are lots of little flows and swirls occurring that contribute to the generation of the planet's magnetic field," says Forest. But "it's the details that are important, and with the Madison Dynamo Experiment we can turn the knobs and see what happens."

Indeed, says Forest, with the Madison Dynamo Experiment now operational and generating data, the secrets of how natural dynamos perform will begin to emerge and the limits of current theory can begin to be tested.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "To Understand Earth's Magnetic Field, Wisconsin Scientists Study Ball Of Molten Metal." ScienceDaily. ScienceDaily, 10 January 2005. <www.sciencedaily.com/releases/2005/01/050106090451.htm>.
National Science Foundation. (2005, January 10). To Understand Earth's Magnetic Field, Wisconsin Scientists Study Ball Of Molten Metal. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2005/01/050106090451.htm
National Science Foundation. "To Understand Earth's Magnetic Field, Wisconsin Scientists Study Ball Of Molten Metal." ScienceDaily. www.sciencedaily.com/releases/2005/01/050106090451.htm (accessed August 27, 2014).

Share This




More Earth & Climate News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Calif. Quake Underscores Need for Early Warning

Calif. Quake Underscores Need for Early Warning

AP (Aug. 26, 2014) Researchers at UC Berkeley are testing a prototype of an earthquake early warning system that California is pursuing years after places like Mexico and Japan already have them up and running. (August 26) Video provided by AP
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

AFP (Aug. 25, 2014) A factory in the industrial state of Sao Paulo produces genetically modified mosquitoes to fight dengue, a deadly tropical disease more prevalent in Brazil than anywhere else in the world. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com
Raw: Prime Minister at Japan Landslide Site

Raw: Prime Minister at Japan Landslide Site

AP (Aug. 25, 2014) Japanese Prime Minister Shinzo Abe visited Hiroshima on Monday as rescuers expanded their search for dozens still missing from landslides around the western Japanese city that killed at least 50 people. (Aug. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins