Featured Research

from universities, journals, and other organizations

MSI Releases 'Moleculizer': A New Approach To Simulation Of Intracellular Biochemical Networks

Date:
January 10, 2005
Source:
The Molecular Sciences Institute
Summary:
The Molecular Sciences Institute has announced the release of a new approach to simulation of intracellular biochemical networks in the January edition of Nature Biotechnology. The research article, entitled "Automatic generation of cellular reaction networks with Moleculizer 1.0," describes MSI's discrete stochastic event simulator, which keeps track of the thousands of complex species formed from pathway proteins as it simulates reactions between them by a standard Monte Carlo method.

Berkeley, CA - January 6, 2005 - Dr. Roger Brent, President and Director of Research at the Molecular Sciences Institute (MSI), announced today the release of a new approach to simulation of intracellular biochemical networks in the January edition of Nature Biotechnology.

Related Articles


The research article, entitled "Automatic generation of cellular reaction networks with Moleculizer 1.0," describes MSI's discrete stochastic event simulator, which keeps track of the thousands of complex species formed from pathway proteins as it simulates reactions between them by a standard Monte Carlo method. A distinguishing aspect of Moleculizer is its ability to generate protein complexes and reactions as they are needed, as opposed to generating all potential complexes and reactions all at once, a task that requires tremendous computational resources.

"Moleculizer is a powerful tool that meets a very real need for biologists," explained Dr. Brent. "It is a critical step forward in our quest to provide an accurate simulation of intracellular biochemical networks."

"I've designed Moleculizer to be intuitive for biologists," said Dr. Larry Lok, a mathematician who conceived and programmed Moleculizer. "Its parallel simplifications in simulation setup and output provide data in a way that is meaningful and useful to biological researchers."

Moleculizer was developed in the context of MSI's "Alpha Project", an ambitious experimental and computational effort to understand the quantitative behavior of a cell signaling pathway in yeast. The Alpha Project is funded by the National Institutes of Health's National Human Genome Research Institute, which designated MSI as a Center of Excellence in Genomic Research. The CEGS program supports multi-investigator, interdisciplinary research teams to develop novel and innovative genomic research projects.

"Moleculizer is exactly the sort of development that one wants to see from multidisciplinary work," explained Dr. Brent. "The mathematical and algorithmic skills that Dr. Lok brought to the problem could only come from one with his strengths, but the work is important because it addresses a problem arising directly from the biology."

Dr. Daniel Gillespie, a pioneer in stochastic methods for modeling chemical kinetics stated, "Dr. Lok has succeeded in adapting and creatively extending earlier developed techniques for stochastically simulating chemical reactions so that they can be used to study real cellular systems, where the huge numbers of potential species and reaction channels makes things very difficult."

Computer simulations can be powerful tools in contemporary molecular biology research, aiding scientists in analyzing data and in testing hypotheses with simulated outcomes before testing them experimentally. The predictive capabilities of computer simulations can also aid biologists in viewing cellular activity over a period of time, by taking advantage of the power of computers to generate the thousands of potential protein complexes and reactions that cells are able to generate.

The Molecular Sciences Institute is an independent nonprofit research laboratory that combines genomic experimentation with computer modeling. Work at MSI aims to weave physics, engineering, computer science, and mathematics together with biology and chemistry to enable precise, quantitative, prediction of the future behaviors of biological systems.

In keeping with the MSI's support for an open source biology, Moleculizer will be made freely available under the GNU Lesser General Public License.

Nature Biotechnology is "a monthly journal covering the science and business of biotechnology. It publishes new concepts in technology/methodology of relevance to the biological, biomedical, agricultural and environmental sciences as well as covers the commercial, political, ethical, legal, and societal aspects of this research."


Story Source:

The above story is based on materials provided by The Molecular Sciences Institute. Note: Materials may be edited for content and length.


Cite This Page:

The Molecular Sciences Institute. "MSI Releases 'Moleculizer': A New Approach To Simulation Of Intracellular Biochemical Networks." ScienceDaily. ScienceDaily, 10 January 2005. <www.sciencedaily.com/releases/2005/01/050110115414.htm>.
The Molecular Sciences Institute. (2005, January 10). MSI Releases 'Moleculizer': A New Approach To Simulation Of Intracellular Biochemical Networks. ScienceDaily. Retrieved February 28, 2015 from www.sciencedaily.com/releases/2005/01/050110115414.htm
The Molecular Sciences Institute. "MSI Releases 'Moleculizer': A New Approach To Simulation Of Intracellular Biochemical Networks." ScienceDaily. www.sciencedaily.com/releases/2005/01/050110115414.htm (accessed February 28, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Saturday, February 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Reuters - Innovations Video Online (Feb. 27, 2015) A dongle that plugs into a Smartphone mimics a lab-based blood test for HIV and syphilis and can detect the diseases in 15 minutes, say researchers. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Android's Popularity Doesn't Mean Profits For Google

Android's Popularity Doesn't Mean Profits For Google

Newsy (Feb. 26, 2015) Seventy percent of smartphones shipped last year were Android but that OS only accounted for 11 percent of total smartphone profits. Video provided by Newsy
Powered by NewsLook.com
Lenovo Hack May Be Retaliation For 'Superfish' Vulnerability

Lenovo Hack May Be Retaliation For 'Superfish' Vulnerability

Newsy (Feb. 26, 2015) Lenovo&apos;s website was hacked by what appears to be the infamous Lizard Squad group. The attack seems to be related to Lenovo&apos;s "Superfish" controversy. Video provided by Newsy
Powered by NewsLook.com
Google's Artificial Intelligence Can Dominate Atari Video Games

Google's Artificial Intelligence Can Dominate Atari Video Games

Buzz60 (Feb. 26, 2015) Google&apos;s artificial intelligence, DeepMind, has figured out how to play and master a handful of Atari video games. Brett Larson explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins