Featured Research

from universities, journals, and other organizations

Sweet And Environmentally Beneficial Discovery: Plastics Made From Orange Peel And A Greenhouse Gas

Date:
January 28, 2005
Source:
Cornell University
Summary:
A Cornell University research group has made a sweet and environmentally beneficial discovery -- how to make plastics from citrus fruits, such as oranges, and carbon dioxide.

Professor Geoffrey Coates, left, holds the reactor he used to make a polymer using a citrus fruit extract and carbon dioxide, as postdoctoral chemistry associate Scott Allen, center, and chemistry doctoral student Chris Byrne display other ingredients essential to the novel process. Byrne is holding a flask of limonene oxide (oxidized orange peel oil), and Allen holds a beaker containing the polymer they created.
Credit: Nicola Kountoupes/Cornell University Photography

ITHACA, N.Y. -- A Cornell University research group has made a sweet and environmentally beneficial discovery -- how to make plastics from citrus fruits, such as oranges, and carbon dioxide.

In a paper published in a recent issue of the Journal of the American Chemical Society (Sept. 2004), Geoffrey Coates, a Cornell professor of chemistry and chemical biology, and his graduate students Chris Byrne and Scott Allen describe a way to make polymers using limonene oxide and carbon dioxide, with the help of a novel "helper molecule" -- a catalyst developed in the researchers' laboratory.

Limonene is a carbon-based compound produced in more than 300 plant species. In oranges it makes up about 95 percent of the oil in the peel.

In industry, Coates explains, the orange peel oil is extracted for various uses, such as giving household cleaners their citrus scent. The oil can be oxidized to create limonene oxide. This is the reactive compound that Coates and his collaborators used as a building block.

The other building block they used was carbon dioxide (CO2), an atmospheric gas that has been rising steadily over the past century and a half -- due largely to the combustion of fossil fuels -- becoming an environmentally harmful greenhouse gas.

By using their catalyst to combine the limonene oxide and CO2, the Coates group produced a novel polymer -- called polylimonene carbonate -- that has many of the characteristics of polystyrene, a petroleum-based plastic currently used to make many disposable plastic products.

"The polymer is a repeating unit, much like a strand of paper dolls. But instead of repeating dolls, the components alternate between limonene oxide and CO2 -- in the polymer," says Coates. Neither limonene oxide nor CO2 form polymers on their own, but when put together, a promising product is created.

"Almost every plastic out there, from the polyester in clothing to the plastics used for food packaging and electronics, goes back to the use of petroleum as a building block," Coates observes. "If you can get away from using oil and instead use readily abundant, renewable and cheap resources, then that's something we need to investigate. What's exciting about this work is that from completely renewable resources, we were able to make a plastic with very nice qualities."

The Coates research team is particularly interested in using CO2 as an alternative building block for polymers. Instead of being pumped into the atmosphere as a waste product, CO2 could be isolated for use in producing plastics, such as polylimonene carbonate.

The Coates laboratory comprises 18 chemists, about half of them striving to make recyclable and biodegradable materials out of cheap, readily available and environmentally friendly building blocks. "Today we use things once and throw them away because plastics are cheap and abundant. It won't be like that in the future," says Coates. "At some point we will look back and say, 'Wow, remember when we would take plastic containers and just throw them away?'"

The research was supported by the Packard Foundation fellowship program, the National Science Foundation, the Cornell Center for Materials Research and the Cornell University Center for Biotechnology.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Sweet And Environmentally Beneficial Discovery: Plastics Made From Orange Peel And A Greenhouse Gas." ScienceDaily. ScienceDaily, 28 January 2005. <www.sciencedaily.com/releases/2005/01/050126112846.htm>.
Cornell University. (2005, January 28). Sweet And Environmentally Beneficial Discovery: Plastics Made From Orange Peel And A Greenhouse Gas. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2005/01/050126112846.htm
Cornell University. "Sweet And Environmentally Beneficial Discovery: Plastics Made From Orange Peel And A Greenhouse Gas." ScienceDaily. www.sciencedaily.com/releases/2005/01/050126112846.htm (accessed September 23, 2014).

Share This



More Matter & Energy News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com
Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Inside London's Massive Sewer Tunnel Project

Inside London's Massive Sewer Tunnel Project

AP (Sep. 22, 2014) Billions of dollars are being spent on a massive super sewer to take away London's vast output of waste, which is endangering the River Thames. (Sept. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins