Featured Research

from universities, journals, and other organizations

Sensor Technology At Case Western Reserve University Can Help Uncover Package Tampering

Date:
February 8, 2005
Source:
Case Western Reserve University
Summary:
In a world with an intensified need for security, Case Western Reserve University researchers are developing materials that could make consumers less susceptible to product tampering or failures. Using a mixture of conventional polymers with small amounts of tailored fluorescent dyes, Case researchers have discovered that the dyes function as natural, molecular sensors, creating light-emitting polymer blends that show mechanical stress by changing colors when a material is deformed.

Using a mixture of conventional polymers with small amounts of tailored fluorescent dyes, Case researchers have discovered that the dyes function as natural, molecular sensors, creating light-emitting polymer blends that show mechanical stress by changing colors when a material is deformed.
Credit: Image courtesy of Case Western Reserve University

CLEVELAND – In a world with an intensified need for security, Case Western Reserve University researchers are developing materials that could make consumers less susceptible to product tampering or failures. Using a mixture of conventional polymers with small amounts of tailored fluorescent dyes, Case researchers have discovered that the dyes function as natural, molecular sensors, creating light-emitting polymer blends that show mechanical stress by changing colors when a material is deformed.

The technology could be useful in a variety of applications that range from early internal failure indicators in machinery and anti-counterfeiting elements to tamper-resistant packaging of food or medicines. Their research findings have appeared in several scholarly publications, most recently the Journal Chemistry of Materials. The research is being funded by the National Science Foundation and industry sources.

Christoph Weder, associate professor of macromolecular science and engineering at the Case School of Engineering, and graduate engineering students Brent Crenshaw and Jill Kunzelman are leading experiments in their lab on the Case campus to further this technology. Crenshaw, who has been working on the project for two years, points out that "only a small amount of dye is needed to make the polymer glow and that the polymer blend's color contrast upon deformation is unparalleled."

Kunzelman, a first-year student, says it would be gratifying one day to "see this technology used in everyday products."

The thought isn't far-fetched. Imagine being on a bass boat or hip-deep in a beautiful river doing some fishing when a colorful light emits from under the water – it's either time to reel in that largemouth bass quickly or attach another lure to your fishing pole. Weder's team created lab samples of a "smart" fishing line based on light-emitting polymer materials. The color of the line indicates when it's been stressed too much. Weder, himself an avid fisherman, is especially proud of that work.

The research team reports that they have successfully blended tailored but readily available fluorescent dyes in minimal concentrations into standard polymers, such as polyethylene and polypropylene, and discovered that the dyes can serve as built-in sensors, which change their fluorescent color and allow the researchers to trace the deformation of the material.

Weder says he is excited by the application potential for this simple, yet groundbreaking technology his group discovered unexpectedly.

"This is so trivial, yet novel at the same time," Weder said. "No one has done this."

Aside from Crenshaw and Kunzelman, Weder also employs two other graduate students, two postdoctoral researchers and four engineering undergraduates on his research team.

In addition, faculty and students in Case's department of macromolecular science and engineering are working on more than 20 projects involving functional polymers, according to Alex Jamieson, professor and chair of the department. Those projects include polymers for membranes in fuel cells, electronic polymers with semiconducting properties and polymers for biofunctional applications, such as those related to drug delivery or biosensors. Weder's deformation sensor technology project is one of the department's forays into photonic polymers.

Jamieson says he's intrigued by Weder's research into deformation sensor technology. "It's a novel approach to developing polymeric blends that are sensitive to deformation," he said. "It's a simple, yet very sensitive technique."

Another exciting aspect of Weder's research is how straightforward it may be to commercialize.

"Some applicable dyes are affordable, easily made and can be used in concentrations as low as 0.1 percent," he said.

"There's potential wherever polymers fulfill a structural function," he added, citing tamper-evident packaging tape as an example. "We're at a level of sophistication that would allow us to produce a simple product now."

For now, these applications are still possibilities. But, Weder adds, with further commercial development, they could become reality in our everyday lives.

###

About Case Western Reserve University

Case is among the nation's leading research institutions. Founded in 1826 and shaped by the unique merger of the Case Institute of Technology and Western Reserve University, Case is distinguished by its strengths in education, research, service, and experiential learning. Located in Cleveland, Case offers nationally recognized programs in the Arts and Sciences, Dentistry, Engineering, Law, Management, Medicine, Nursing, and Social Sciences. The Case School of Engineering is celebrating its 125th anniversary in 2005.


Story Source:

The above story is based on materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.


Cite This Page:

Case Western Reserve University. "Sensor Technology At Case Western Reserve University Can Help Uncover Package Tampering." ScienceDaily. ScienceDaily, 8 February 2005. <www.sciencedaily.com/releases/2005/02/050205122742.htm>.
Case Western Reserve University. (2005, February 8). Sensor Technology At Case Western Reserve University Can Help Uncover Package Tampering. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2005/02/050205122742.htm
Case Western Reserve University. "Sensor Technology At Case Western Reserve University Can Help Uncover Package Tampering." ScienceDaily. www.sciencedaily.com/releases/2005/02/050205122742.htm (accessed August 2, 2014).

Share This




More Matter & Energy News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins