Featured Research

from universities, journals, and other organizations

Sumatra Earthquake Three Times Larger Than Originally Thought

Date:
February 12, 2005
Source:
Northwestern University
Summary:
Northwestern University seismologists have determined that the Dec. 26 Sumatra earthquake that set off a deadly tsunami throughout the Indian Ocean was three times larger than originally thought, making it the second largest earthquake ever instrumentally recorded and explaining why the tsunami was so destructive.

Map comparing the aftershock zone to the minimum area of fast slip previously recognized and the much larger area of slow slip shown by analysis of normal mode data.
Credit: Courtesy of Northwestern University

EVANSTON, Ill. --- Northwestern University seismologists have determined that the Dec. 26 Sumatra earthquake that set off a deadly tsunami throughout the Indian Ocean was three times larger than originally thought, making it the second largest earthquake ever instrumentally recorded and explaining why the tsunami was so destructive.

By analyzing seismograms from the earthquake, Seth Stein and Emile Okal, both professors of geological sciences in Northwestern's Weinberg College of Arts and Sciences, calculated that the earthquake's magnitude measured 9.3, not 9.0, and thus was three times larger. These results have implications for why Sri Lanka suffered such a great impact and also indicate that the chances of similar large tsumanis occurring in the same area are reduced.

"The rupture zone was much larger than previously thought," said Stein. "The initial calculations that it was a 9.0 earthquake did not take into account what we call slow slip, where the fault, delineated by aftershocks, shifted more slowly. The additional energy released by slow slip along the 1,200-kilometer long fault played a key role in generating the devastating tsunami."

The large tsunami amplitudes that occurred in Sri Lanka and India, said tsunami expert Okal, result from rupture on the northern, north-trending segment of the fault -- the area of slow slip -- because tsunami amplitudes are largest perpendicular to the fault.

Because the entire rupture zone slipped (both fast and slow slip fault areas), strain accumulated from subduction of the Indian plate beneath the Burma microplate has been released, leaving no immediate danger of a comparable ocean-wide tsunami being generated on this segment of the plate boundary. However, the danger of a local tsunami due to a powerful aftershock or a large tsunami resulting from a great earthquake on segments to the south remains.

The analysis technique used by Stein and Okal to extract these data from the earth's longest period vibrations (normal modes) relied on results developed by them and colleague Robert Geller (now at the University of Tokyo) in their graduate studies almost 30 years ago. However, because such gigantic earthquakes are rare, these methods had been essentially unused until records of the Sumatra earthquake on modern seismometers became available.

The largest earthquake ever recorded, which measured 9.5, was in Chile on May 22, 1960.

Additional information on this research can be found at http://www.earth.northwestern.edu/people/seth/research/sumatra2.html.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Sumatra Earthquake Three Times Larger Than Originally Thought." ScienceDaily. ScienceDaily, 12 February 2005. <www.sciencedaily.com/releases/2005/02/050211094339.htm>.
Northwestern University. (2005, February 12). Sumatra Earthquake Three Times Larger Than Originally Thought. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2005/02/050211094339.htm
Northwestern University. "Sumatra Earthquake Three Times Larger Than Originally Thought." ScienceDaily. www.sciencedaily.com/releases/2005/02/050211094339.htm (accessed April 19, 2014).

Share This



More Earth & Climate News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drought Concerns May Hurt Lake Tourism

Drought Concerns May Hurt Lake Tourism

AP (Apr. 18, 2014) Operators of recreational businesses on western reservoirs worry that ongoing drought concerns will keep boaters and other visitors from flocking to the popular summer attractions. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Ark. Man Finds 6-Carat Diamond At State Park

Ark. Man Finds 6-Carat Diamond At State Park

Newsy (Apr. 18, 2014) An Arkansas man has found a nearly 6.2-carat diamond, which he dubbed "The Limitless Diamond," at the Crater of Diamonds State Park. Video provided by Newsy
Powered by NewsLook.com
Deadly Avalanche Sweeps Slopes of Mount Everest

Deadly Avalanche Sweeps Slopes of Mount Everest

AP (Apr. 18, 2014) At least six Nepalese guides are dead after an avalanche swept the slopes of Mount Everest along a route used to climb the world's highest peak. (April 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins