Featured Research

from universities, journals, and other organizations

Physics Team Puts New Twist On Spin Hall Effect

Date:
February 11, 2005
Source:
Texas A&M University
Summary:
An international team of physicists that includes a Texas A&M University professor has announced discovery of a new spintronic effect in semiconductor chips, the intrinsic spin Hall effect, which puts a new twist on future technology and the possibility for novel circuits with low energy consumption.

COLLEGE STATION, Feb. 7, 2005 – An international team of physicists that includes a Texas A&M University professor has announced discovery of a new spintronic effect in semiconductor chips, the intrinsic spin Hall effect, which puts a new twist on future technology and the possibility for novel circuits with low energy consumption.

The team is formed by physicists Dr. Jφrg Wunderlich and Dr. Bernd Kaestner from the Hitachi Cambridge Laboratory, U.K.; Prof. Tomαs Jungwirth from the Institute of Physics of the Academy of Sciences of the Czech Republic and the University of Nottingham, U.K.; and Prof. Jairo Sinova from Texas A&M.

In a normal Hall effect, a voltage is created perpendicular to an electric current as it flows through a conductor in a magnetic field. The magnetic field deflects the moving charges to the sides of the conductor, resulting in an observable Hall voltage.

The spin Hall effect was first predicted in 1971. Here the moving electrons, which carry with them a tiny magnet called the "spin," collide with impurities and these collisions generate opposing magnetizations at the conductor's edges.

Despite its intriguing ramifications, the theory disappeared into virtual obscurity until 1999, when it was rediscovered and further elaborated. Four years later, two independent teams, one including Sinova and Jungwirth, proposed a novel mechanism called the intrinsic spin Hall effect in which similar magnetization occurs without the need for collisions.

The prediction touched off a theoretical firestorm, resulting in more than 50 articles arguing for and against the possibility. As the heated debate raged on, Wunderlich and Kaestner developed a new type of device to measure magnetization at each side of a high-mobility, ultra-thin conducting layer embedded within a semiconductor chip using built-in light-emitting diodes.

Armed with this novel tool, Wunderlich and Kaestner teamed with Jungwirth and Sinova to observe the spin Hall effect. Their findings will be featured the February issue of Physics Today along with an independent and parallel observation of the effect in conventional bulk semiconductors.

Team members say the more than 10 times larger signal detected in the Hitachi device can be attributed to the special layered design of the semiconductor chip that yielded operation in a regime close to the intrinsic spin Hall effect.

"They are both beautiful experiments, and one of the most remarkable aspects is that they seem to be exploring opposite regimes," Sinova adds.

The possibility of generating magnetization without circulating currents has great implications in many areas, most notably the design of information processing and storage devices.

"Obviously we are only at the beginning of this journey of discovery," Sinova explains. "As you gather more facts, the truth tends to reveal itself. That's the fun of science. We're seeking to know, and we're learning in the process."

###

For a full description of the work please see http://arxiv.org/abs/cond-mat/0410295; to be published in February in Physical Review Letters vol. 94 (2005)


Story Source:

The above story is based on materials provided by Texas A&M University. Note: Materials may be edited for content and length.


Cite This Page:

Texas A&M University. "Physics Team Puts New Twist On Spin Hall Effect." ScienceDaily. ScienceDaily, 11 February 2005. <www.sciencedaily.com/releases/2005/02/050211095406.htm>.
Texas A&M University. (2005, February 11). Physics Team Puts New Twist On Spin Hall Effect. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2005/02/050211095406.htm
Texas A&M University. "Physics Team Puts New Twist On Spin Hall Effect." ScienceDaily. www.sciencedaily.com/releases/2005/02/050211095406.htm (accessed April 16, 2014).

Share This



More Matter & Energy News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Patents Contact Lens Cameras; Internet Is Wary

Google Patents Contact Lens Cameras; Internet Is Wary

Newsy (Apr. 15, 2014) — Google has filed for a patent to develop contact lenses capable of taking photos. The company describes possible benefits to blind people. Video provided by Newsy
Powered by NewsLook.com
The Walking, Talking Oil-Drigging Rig

The Walking, Talking Oil-Drigging Rig

Reuters - Business Video Online (Apr. 15, 2014) — Pennsylvania-based Schramm is incorporating modern technology in its next generation oil-drigging rigs, making them smaller, safer and smarter. Ernest Scheyder reports. Video provided by Reuters
Powered by NewsLook.com
Dutch Highway Introduces Glow-In-The-Dark Paint

Dutch Highway Introduces Glow-In-The-Dark Paint

Newsy (Apr. 14, 2014) — A Dutch highway has become the first lit by glow-in-the-dark paint — a project aimed at reducing street light use. Video provided by Newsy
Powered by NewsLook.com
Google Buys Drone Maker, Hopes to Connect Rural World

Google Buys Drone Maker, Hopes to Connect Rural World

Newsy (Apr. 14, 2014) — Formerly courted by Facebook, Titan Aerospace will become a part of Google's quest to blanket the world in Internet connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins