Featured Research

from universities, journals, and other organizations

Physicists Hear High-Tech Whistle While They Work

Date:
February 12, 2005
Source:
NASA/Jet Propulsion Laboratory
Summary:
It was music to the ears of physicists at the University of California, Berkeley, when they forced liquid helium-4 through thousands of tiny holes and heard a whistling sound. Why the big fuss about an odd sound? It seems this breakthrough might eventually lead to enhanced earthquake studies and more accurate navigation systems, including the Global Positioning System (GPS).

Dr. Richard Packard, left, and graduate student Emile Hoskinson, right, are shown with the cryostat insert, where the experiment was performed.
Credit: Photo courtesy of NASA/Jet Propulsion Laboratory

It was music to the ears of physicists at the University of California, Berkeley, when they forced liquid helium-4 through thousands of tiny holes and heard a whistling sound.

Why the big fuss about an odd sound? It seems this breakthrough might eventually lead to enhanced earthquake studies and more accurate navigation systems, including the Global Positioning System (GPS).

It all starts with one slippery liquid helium-4. Ultra-cold helium-4 becomes a superfluid, meaning it flows without friction. The scientists squashed it through an array of apertures 1,000 times smaller than the width of a human hair. The liquid whooshed faster and faster, until it reached a critical velocity. At that point, in a strange phenomenon, a microscopic quantum whirlpool dashed across each aperture, carrying away some of the helium-4's flow energy. This abruptly slowed the flow. The fluid repeatedly sped up and slowed down, creating vibrations that produced a whistling sound going from high to low.

A recording of the sound, called a quantum whistle, is available online at: http://www.nasa.gov/vision/earth/technologies/whistle.html.

"This whistle caught us by surprise," said UC Berkeley physics professor Dr. Richard Packard. "It turns out a single aperture will not make the whistle, because of random speed fluctuations. Our experiment shows all the flows through the holes are acting together, coherently, producing the whistle. We suspect it's like hearing thousands of crickets chirping in unison on a summer night."

Packard said this new phenomenon might lead to improved whistling superfluid navigation gyroscopes that detect extremely small rotational motion. As their motion changes, the whistle's volume would change. This would be especially useful on submarines or airplanes in regions where GPS signals are unavailable.

The GPS navigation system relies on knowing the state of Earth's rotation. Because weather and other factors affect Earth's rotation, the GPS system needs constant updating for accuracy. GPS gets its Earth rotation data from an array of radio telescopes distributed around the world. A very sensitive rotation sensor might complement the existing telescope array, providing data quickly and inexpensively.

Superfluid gyroscopes are devices that detect very small rotational motion. They use a specially-shaped, superfluid-filled vessel containing two aperture arrays; when the vessel rotates, the sound of the quantum whistle changes. This provides a telltale clue and allows for sensitive measures of the movements.

"This phenomenon may also permit scientists to develop very sensitive rotation sensors to measure small surface twisting signals created when an earthquake's vibrations travel through irregularities in the Earth's crust," Packard said. "In fact, we can take this concept even further. If seismologists can measure rotation signals from seismic activity on Mars, they might learn a lot about martian structure."

Packard and his colleagues have a history of hearing whistles while they work. Their experiments in 1997 and 2001, using liquid helium-3, produced a whistle. But the temperatures needed in those experiments were extremely low, just a few thousandths of a degree above absolute zero, which is almost one million times colder than average room temperature. Very few people are trained to work with such ultra-cold technology, which limits its potential applications.

Packard and graduate student Emile Hoskinson were especially excited because this latest phenomenon occurs at a relatively high temperature of 2 Kelvin, which is 2,000 times warmer than the previous helium-3 studies. This might make the technology available to more users with off-the-shelf cryocoolers.

This research was conducted under a grant from NASA and the National Science Foundation. The findings appeared in the January 27 issue of Nature. More information about Packard's research is online at http://www.physics.berkeley.edu/research/packard/.

JPL, a division of the California Institute of Technology, Pasadena, Calif., manages the Quantum Technology in Life Support and Habitation Program for NASA's Exploration Systems Mission Directorate.


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "Physicists Hear High-Tech Whistle While They Work." ScienceDaily. ScienceDaily, 12 February 2005. <www.sciencedaily.com/releases/2005/02/050211100217.htm>.
NASA/Jet Propulsion Laboratory. (2005, February 12). Physicists Hear High-Tech Whistle While They Work. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2005/02/050211100217.htm
NASA/Jet Propulsion Laboratory. "Physicists Hear High-Tech Whistle While They Work." ScienceDaily. www.sciencedaily.com/releases/2005/02/050211100217.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins