Featured Research

from universities, journals, and other organizations

Researchers Study Radiation Blockers While Conducting Nuclear Imaging Of Iodine Uptake In Mouse Tissues

Date:
April 21, 2005
Source:
DOE/Thomas Jefferson National Accelerator Facility
Summary:
Scientists have found that a dose five times higher than the FDA-recommended dosage of potassium iodide in the event of a nuclear accident is needed to protect small animals effectively from radioactive iodide in medical imaging procedures. The long-term animal nuclear imaging project is being conducted by a collaboration of biology and physics researchers from the Department of Energy's Jefferson Lab and The College of William & Mary (CWM).

Scientists have found that a dose five times higher than the FDA-recommended dosage of potassium iodide in the event of a nuclear accident is needed to protect small animals effectively from radioactive iodide in medical imaging procedures. The long-term animal nuclear imaging project is being conducted by a collaboration of biology and physics researchers from the Department of Energy's Jefferson Lab and The College of William & Mary (CWM).

The research was conducted at the CWM with a Jefferson Lab and CWM-built medical imaging system to perform investigational studies of mice. Bob Welsh, a JLab/CWM jointly appointed professor, is one researcher working on the project. The research demonstrates that scientists can learn about how the body uses certain substances of interest - such as insulin, the fat-regulating protein leptin and a wide range of other biological compounds - by tracking how these substances move through the body of a mouse.

"The way we follow those substances is to attach to them a radioactive isotope of iodine, Iodine-125. Iodine-125 emits a low-energy gamma ray," Welsh says, "It's not a tremendous amount of energy, but it's easy to track with these very precise detectors that have been designed and built by the Jefferson Lab Detector Group."

The thyroid needs iodine to regulate metabolism and is unable to distinguish between regular dietary iodine and ingested radioactive iodine. So the researchers weren't surprised when, in the course of the project, they noticed that the mice subjects' thyroids always absorbed a significant amount of radioactive iodine. In addition to being potentially bad for the mouse, the thyroid's absorption of radioactive iodine made the images difficult to interpret and could provide false-positive readings or possibly obscure substantial iodine uptake in nearby tissues.

The team decided to test what would happen if they gave the mice potassium iodide, the FDA-recommended drug for blocking radioactive iodine absorption by the thyroid in the event of a nuclear accident, before exposing the mice to a form of radioiodine used in imaging studies. CWM undergraduate William Hammond, who will be presenting the team's findings at the American Physical Society (APS) April Meeting, Session E12.0004, participated in this phase of the research for his senior thesis project.

The researchers started with the potassium iodide dose that's recommended for humans in the event of a nuclear incident, 130 mg (milligrams), and scaled that down to the mass of the mouse. They administered a liquid form of the drug to mice, injected the radioiodine for imaging an hour later, and then imaged the mouse.

"What we noticed was this: the dose that was exactly the scaled human dose did not completely block the uptake of radioiodine. But when we tried three times, five times, ten times the scaled human dose, we obtained results that indicate that ten times the human dose blocks 1.5-2 times better, though five times is just about as good as ten times," Welsh says.

The researchers recognized that the extra benefit gained by the largest potassium iodide dose administered could in some cases be outweighed by potential side effects. To protect their mice in future imaging studies, they're planning to use the potassium iodide dose that's five times the scaled-down human dose.

As for larger implications, the study should not simply be scaled-up and applied to humans. "It could say that a mouse's metabolism is so different from a human's that you can't just scale the human dose down for mice. But when it comes to small animals, I think the results should be taken into consideration," Welsh notes.

This research was made possible by a collaboration of Jefferson Lab and College of William researchers, including CWM physicists Robert Welsh, Julie Cella, Coleen McLoughlin, Kevin Smith and William Hammond; CWM biologists Eric Bradley and Margaret Saha; CWM applied science graduate student Jianguo Qian; and Jefferson Lab Detector Group scientists Stan Majewski, Vladimir Popov, Mark Smith and Drew Weisenberger.

###

Thomas Jefferson National Accelerator Facility's (Jefferson Lab's) basic mission is to provide forefront scientific facilities, opportunities and leadership essential for discovering the fundamental structure of nuclear matter; to partner in industry to apply its advanced technology; and to serve the nation and its communities through education and public outreach. Jefferson Lab is a Department of Energy Office of Science research facility managed by the Southeastern Universities Research Association.


Story Source:

The above story is based on materials provided by DOE/Thomas Jefferson National Accelerator Facility. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Thomas Jefferson National Accelerator Facility. "Researchers Study Radiation Blockers While Conducting Nuclear Imaging Of Iodine Uptake In Mouse Tissues." ScienceDaily. ScienceDaily, 21 April 2005. <www.sciencedaily.com/releases/2005/04/050421152753.htm>.
DOE/Thomas Jefferson National Accelerator Facility. (2005, April 21). Researchers Study Radiation Blockers While Conducting Nuclear Imaging Of Iodine Uptake In Mouse Tissues. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2005/04/050421152753.htm
DOE/Thomas Jefferson National Accelerator Facility. "Researchers Study Radiation Blockers While Conducting Nuclear Imaging Of Iodine Uptake In Mouse Tissues." ScienceDaily. www.sciencedaily.com/releases/2005/04/050421152753.htm (accessed April 23, 2014).

Share This



More Plants & Animals News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Leopard Bites Man in India

Raw: Leopard Bites Man in India

AP (Apr. 22, 2014) A leopard caused panic in the city of Chandrapur on Monday when it sprung from the roof of a house and charged at rescue workers. (April 22) Video provided by AP
Powered by NewsLook.com
Iowa College Finds Beauty in Bulldogs

Iowa College Finds Beauty in Bulldogs

AP (Apr. 22, 2014) Drake University hosts 35th annual Beautiful Bulldog Contest. (April 21) Video provided by AP
Powered by NewsLook.com
805-Pound Shark Caught Off The Coast Of Florida

805-Pound Shark Caught Off The Coast Of Florida

Newsy (Apr. 22, 2014) One Florida fisherman caught a 805-pound shark off the coast of Florida earlier this month. Video provided by Newsy
Powered by NewsLook.com
Breakfast Foods Are Getting Pricier

Breakfast Foods Are Getting Pricier

AP (Apr. 21, 2014) Breakfast is now being served with a side of sticker shock. The cost of morning staples like bacon, coffee and orange juice is on the rise because of global supply problems. (April 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins