Featured Research

from universities, journals, and other organizations

Chip-scale Refrigerators Cool Bulk Objects

Date:
April 22, 2005
Source:
National Institute of Standards and Technology
Summary:
Chip-scale refrigerators capable of reaching temperatures as low as 100 milliKelvin have been used to cool bulk objects for the first time, researchers at the National Institute of Standards and Technology (NIST) report. The solid-state refrigerators have applications such as cooling cryogenic sensors in highly sensitive instruments for semiconductor defect analysis and astronomical research.

This colorized scanning electron micrograph shows a cube of germanium attached to a membrane. The four small light blue rectangles at the midpoints of the membrane perimeter are chip-scale refrigerators that cooled the cube and membrane to only a few hundred thousandths of a degree above absolute zero.
Credit: Image credit: N. Miller, A. Clark/NIST

Chip-scale refrigerators capable of reaching temperatures as low as 100 milliKelvin have been used to cool bulk objects for the first time, researchers at the National Institute of Standards and Technology (NIST) report. The solid-state refrigerators have applications such as cooling cryogenic sensors in highly sensitive instruments for semiconductor defect analysis and astronomical research.

The work is featured in the April 25, 2005, issue of Applied Physics Letters.* The NIST-designed refrigerators, each 25 by 15 micrometers, are sandwiches of a normal metal, an insulator and a superconducting metal. When a voltage is applied across the sandwich, the hottest electrons "tunnel" from the normal metal through the insulator to the superconductor. The temperature in the normal metal drops dramatically and drains electronic and vibrational energy from the objects being cooled.

The researchers used four pairs of these sandwiches to cool the contents of a silicon nitrate membrane that was 450 micrometers on a side and 0.4 micrometers thick. A cube of germanium 250 micrometers on a side was glued on top of the membrane. The cube is about 11,000 times larger than the combined volume of the refrigerators. This is roughly equivalent to having a refrigerator the size of a person cool an object the size of the Statue of Liberty. Both objects were cooled down to about 200 mK, and further improvements in refrigerator performance are possible, according to the paper.

The refrigerators are fabricated using common chip-making lithography methods, making production and integration with other microscale devices straightforward. The devices are much smaller and less expensive than conventional equipment used for cooling down to 100 mK, a target temperature for optimizing the performance of cryogenic sensors. These sensors take advantage of unusual phenomena that occur at very low temperatures to detect very small differences in X-rays given off by nanometer-scale particles, enabling users such as the semiconductor industry to identify the particles. The work was supported in part by the National Aeronautics and Space Administration and NIST's Office of Microelectronics Programs.

###

*A.M. Clark, N.A. Miller, A. Williams, S.T. Ruggiero, G.C. Hilton, L.R. Vale, J.A. Beall, K.D. Irwin, J.N. Ullom. Cooling of Bulk Material by Electron-Tunneling Refrigerators. Applied Physics Letters. April 25, 2005.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Chip-scale Refrigerators Cool Bulk Objects." ScienceDaily. ScienceDaily, 22 April 2005. <www.sciencedaily.com/releases/2005/04/050421211242.htm>.
National Institute of Standards and Technology. (2005, April 22). Chip-scale Refrigerators Cool Bulk Objects. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2005/04/050421211242.htm
National Institute of Standards and Technology. "Chip-scale Refrigerators Cool Bulk Objects." ScienceDaily. www.sciencedaily.com/releases/2005/04/050421211242.htm (accessed April 16, 2014).

Share This



More Matter & Energy News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Patents Contact Lens Cameras; Internet Is Wary

Google Patents Contact Lens Cameras; Internet Is Wary

Newsy (Apr. 15, 2014) Google has filed for a patent to develop contact lenses capable of taking photos. The company describes possible benefits to blind people. Video provided by Newsy
Powered by NewsLook.com
The Walking, Talking Oil-Drigging Rig

The Walking, Talking Oil-Drigging Rig

Reuters - Business Video Online (Apr. 15, 2014) Pennsylvania-based Schramm is incorporating modern technology in its next generation oil-drigging rigs, making them smaller, safer and smarter. Ernest Scheyder reports. Video provided by Reuters
Powered by NewsLook.com
Dutch Highway Introduces Glow-In-The-Dark Paint

Dutch Highway Introduces Glow-In-The-Dark Paint

Newsy (Apr. 14, 2014) A Dutch highway has become the first lit by glow-in-the-dark paint — a project aimed at reducing street light use. Video provided by Newsy
Powered by NewsLook.com
Google Buys Drone Maker, Hopes to Connect Rural World

Google Buys Drone Maker, Hopes to Connect Rural World

Newsy (Apr. 14, 2014) Formerly courted by Facebook, Titan Aerospace will become a part of Google's quest to blanket the world in Internet connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins