Featured Research

from universities, journals, and other organizations

Astronauts' Children Unlikely To Inherit Cosmic Ray-Induced Genetic Defects

Date:
April 22, 2005
Source:
Brookhaven National Laboratory
Summary:
Male astronauts exposed to cosmic rays in space are not likely to pass on possible mutations caused by the rays to their offspring, according to a new study by a collaboration that includes a scientist from the U.S. Department of Energy’s Brookhaven National Laboratory.

Richard Setlow, with one type of fish he uses in his research.
Credit: Courtesy of Brookhaven National Laboratory

Upton, NY - Male astronauts exposed to cosmic rays in space are not likely to pass on possible mutations caused by the rays to their offspring, according to a new study by a collaboration that includes a scientist from the U.S. Department of Energy’s Brookhaven National Laboratory. The results are published in the April 11, 2005, online issue of the Proceedings of the National Academy of Sciences.

Related Articles


“We concluded that one hazard to male astronauts as a result of exposure to cosmic rays - high-energy, heavy nuclei that zoom in from deep space - is probably temporary sterility, but not significant effects to their future offspring,” said biophysicist Richard Setlow, the Brookhaven scientist who participated in the research.

Cosmic-ray exposure could pose serious health risks to astronauts, who are not protected by Earth’s atmosphere and magnetic field - natural defense systems that prevent most cosmic rays from reaching the ground. Compared to high-energy electromagnetic radiation, such as x-rays and gamma rays, cosmic rays may cause more severe damage to cells and are more likely to result in gene mutations or cancer. Scientists are now using animals to model the health effects of cosmic-ray exposure on humans.

To test how cosmic-ray exposure might affect the children of astronauts, Setlow and his collaborators used Medaka fish, which are small fresh-water fish native to Japan, South Korea, and China. The group exposed male Medaka to one of two types of high-energy nuclei - iron and carbon - that simulate cosmic rays. The iron-nuclei exposures were performed at Brookhaven’s Alternating Gradient Synchrotron facility, and the carbon exposures were carried out at the National Institute of Radiological Sciences in Chiba, Japan.

After exposure, the males were mated to non-exposed females. Fifteen to 20 embryos were collected daily for several months and observed under a microscope at the University of Tokyo. “Medaka fish were an excellent system to use for this study,” said Setlow. “Their biggest advantage is that the covering of their embryos is clear, allowing us to visually observe mutations within a few days of fertilization.”

The researchers looked for particular signs that the male Medaka - specifically, their sperm - had been damaged by the nuclei: dead embryos, which pointed to the presence of dominant lethal mutations, and color abnormalities, which indicated that a permanent, but not lethal, genetic change had occurred.

The group found that, in total, mutations resulting from exposure to iron and carbon nuclei occurred somewhat more frequently than mutations in fish exposed to gamma rays, which served as a control group. But within the total, dominant lethal mutations occurred far more frequently than color mutations. This indicates that sperm cells in male astronauts exposed to cosmic rays are more likely to die (causing temporary sterility) than undergo a non-lethal mutation that could pass on to children.

This research was supported by the National Aeronautics and Space Administration and the Ministry of Education, Culture, Sports, Science and Technology in Japan. The experiments were approved by Brookhaven Lab’s Institutional Animal Care and Use Committee and The University of Tokyo Animal Bioscience Committee.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Astronauts' Children Unlikely To Inherit Cosmic Ray-Induced Genetic Defects." ScienceDaily. ScienceDaily, 22 April 2005. <www.sciencedaily.com/releases/2005/04/050421212352.htm>.
Brookhaven National Laboratory. (2005, April 22). Astronauts' Children Unlikely To Inherit Cosmic Ray-Induced Genetic Defects. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2005/04/050421212352.htm
Brookhaven National Laboratory. "Astronauts' Children Unlikely To Inherit Cosmic Ray-Induced Genetic Defects." ScienceDaily. www.sciencedaily.com/releases/2005/04/050421212352.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Space & Time News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins