Featured Research

from universities, journals, and other organizations

Earth's Gravity Scar

Date:
May 5, 2005
Source:
European Space Agency
Summary:
A new ESA study predicts that the devastating Sumatran earthquake, which resulted in the tragic tsunami of 26 December 2004, will have left a 'scar' on Earth's gravity that could be detected by a sensitive new satellite, due for launch next year.

The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission will measure high-accuracy gravity gradients and provide a global model of the Earth's gravity field and of the geoid. The geoid (the surface of equal gravitational potential of a hypothetical ocean at rest) serves as the classical reference for all topographical features.
Credit: Image courtesy of European Space Agency

A new ESA study predicts that the devastating Sumatran earthquake, which resulted in the tragic tsunami of 26 December 2004, will have left a 'scar' on Earth's gravity that could be detected by a sensitive new satellite, due for launch next year.

Related Articles


The Sumatran earthquake measured 9 on the Richter scale and caused widespread devastation and death when it struck unexpectedly late last year. Thankfully, earthquakes of this magnitude are rare events, taking place perhaps once every two decades.

Seismological data suggests that, during the event, the seafloor on either side of a fault line running for 1000 km along the bottom of the Indian Ocean dramatically changed height, producing a ledge, 6 metres high. Such a large-scale movement will change the gravitational field of the Earth. Roberto Sabadini and Giorgio Dalla Via, University of Milan, and colleagues have calculated this change. They found that the Earth's gravity altered, in an instant, by as much as is expected from six years' worth of melting at the Patagonian Ice Fields in southernmost South America.

It may seem surprising that Earth's gravity is not equally strong at all points of the globe. Instead, it varies by a small fraction due to the presence of such things as mountains or deep ocean trenches. The tides and ocean circulation patterns also affect the gravity, as does the rotation of the Earth itself, which bulges out the planet's equator and makes its diameter 21 kilometres wider than the pole-to-pole distance.

In order to measure the deviations from the average level of gravity, Earth scientists invented the concept of the geoid. This is a bit like a hi-tech version of 'sea level', which is often used to give an absolute height measure. Today's modern measurements need something more accurate, however.

The geoid is a hypothetical surface, on which the gravitational pull of the Earth is the same everywhere. It wraps itself around the Earth, moving away from the real surface when it is over areas of greater density and therefore stronger gravity. Over less dense regions, the geoid moves closer to the real surface.

When material is moved around, either instantaneously in an earthquake or gradually as in a melting ice field, the Earth's gravity in the local region changes and so does the height of the geoid. In the Sumatran earthquake, Sabadini and Dalla Via found that the total geoid movement was some 18 mm -- a lot for a geoid!

ESA's Gravity Field and Ocean Circulation Explorer (GOCE) is designed to sensitively investigate the gravitational field of the Earth from orbit. As the spacecraft passes over regions of stronger and weaker gravitational pull, it will bob up and down. Such deviations are far below the perceptible limits of humans but GOCE is equipped with a device called a gradiometer than can detect these ultra-subtle differences. By measuring the deviations in the geoid, scientists can gain a unique window into our planet.

"This work is at the frontier of geophysics and the perfect complement to seismology," says Sabadini, "Seismology is good for detecting the slip of earthquake faults and the location of the epicentre, geoid monitoring can determine how much mass is actually being moved around."

It can also be used in the quest to understand climate change as ocean circulation also affects the geoid. Changes in climate, which in turn affect the ocean circulation pattern, will show up as a yearly change in the geoid. With so much to offer, the GOCE satellite is scheduled to launch in 2006. A paper on the Sumatran Earthquake by Roberto Sabadini, Giorgio Dalla Via, Masja Hoogland, Abdelkrim Aoudia is published in EOS, the journal of the American Geophysical Union.


Story Source:

The above story is based on materials provided by European Space Agency. Note: Materials may be edited for content and length.


Cite This Page:

European Space Agency. "Earth's Gravity Scar." ScienceDaily. ScienceDaily, 5 May 2005. <www.sciencedaily.com/releases/2005/05/050504191450.htm>.
European Space Agency. (2005, May 5). Earth's Gravity Scar. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2005/05/050504191450.htm
European Space Agency. "Earth's Gravity Scar." ScienceDaily. www.sciencedaily.com/releases/2005/05/050504191450.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins