Featured Research

from universities, journals, and other organizations

Penn Study Shows Liver Receptor Key To Diet-dependent Differences In Blood Lipid Levels

Date:
May 16, 2005
Source:
University Of Pennsylvania School Of Medicine
Summary:
Researchers at the University of Pennsylvania School of Medicine have discovered that a molecule found in liver cells is an important link in explaining the relationship among diet, lipid levels in blood, and atherosclerosis. The research team surmises that drugs targeted at the liver may one day help lower elevated lipids and battle cardiovascular disease.

Schematic of how diet and increased Liver X Receptor activity interact to affect blood lipid levels.
Credit: Mitchell Lazar and Cell Press

Philadelphia, PA) – Researchers at the University of Pennsylvania School of Medicine have discovered that a molecule found in liver cells is an important link in explaining the relationship among diet, lipid levels in blood, and atherosclerosis. The research team surmises that drugs targeted at the liver may one day help lower elevated lipids and battle cardiovascular disease. Mitchell Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at Penn, and colleagues report their findings in the May 2005 issue of Cell Metabolism.

The high-cholesterol, high-fat so-called “Western diet” has accelerated an epidemic of atherosclerotic cardiovascular disease, the leading cause of death in industrialized nations. And, understanding interactions between genes and the reality of what most people eat are increasingly recognized as critical for effective treatment.

Molecules found in the nucleus of liver cells called LXRs (for Liver X Receptors) have emerged in the last few years as crucial regulators of cholesterol and lipid metabolism. (Click on thumbnail to view full-size image). “The conventional wisdom–borne out of drug-development studies done before this paper–was that LXRs are good in terms of decreasing atherosclerosis and bad in terms of increased triglycerides,” explains Lazar. Indeed, although LXR-based experimental drugs, which dramatically increase LXR activity throughout the body, reduce cholesterol levels in the blood, they also lead to high levels of triglycerides.

Surmising that a targeted approach might work better, the researchers used transgenic mice engineered to have an excess of LXR in their liver only, which gave the mice high levels of cholesterol and an increased risk of heart disease. They found that LXR, which senses fat in the liver, could adjust the consequences of eating a high-fat Western diet.

The team found that the increased liver LXR worsened levels of cholesterol and triglycerides in mice fed a normal, low-fat diet. However, surprisingly, when the same transgenic mice with increased LXR were fed a high-fat/high-cholesterol diet, similar in composition to a standard Western diet, their blood cholesterol and triglyceride levels actually improved. Furthermore, the mice were protected from the atherosclerotic cardiovascular disease that normally results from this diet. However, the beneficial effect of the increased LXR levels was lost when mice were treated with the experimental drug.

The researchers concluded that increased expression of LXR in the liver is beneficial in a body full of natural molecules that bind to the LXR receptor, which are generated by the Western diet, but not when on a low-fat, healthy diet. However, this benefit is lost when a potent drug is added to the system. “The reason is that a different set of target genes is turned on by this synthetic molecule, as opposed to the natural molecule,” says Lazar. “We’re saying, maybe what we need are drugs that mimic the natural ligand rather than a sledgehammer like the potent pharmaceutical drugs that too powerfully activate LXRs throughout the body.” The hope is that these will decrease cholesterol without increasing triglycerides.

One of the main questions facing the study of complex metabolic diseases is, if two people eat a high-fat diet, why does one person’s cholesterol go up but the other’s does not. “If we find natural variations in people in the amount of LXR in their livers, this may help explain this conundrum of the difference in susceptibility to high cholesterol and heart disease, depending on diet,” says Lazar. “The answer is genetics. Our work suggests that one of the new genetic factors to pay attention to is the amount of LXR in the liver.”

The study was funded in part by the National Institutes of Health and a Bristol Myers Squibb Freedom to Discover Award in Metabolic Research. Study co-authors are Michael Lehrke, Corinna Lebherz, Segan Millington, Hong-Ping Guan, John Millar, Daniel J. Rader, and James M. Wilson, all from Penn.


Story Source:

The above story is based on materials provided by University Of Pennsylvania School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania School Of Medicine. "Penn Study Shows Liver Receptor Key To Diet-dependent Differences In Blood Lipid Levels." ScienceDaily. ScienceDaily, 16 May 2005. <www.sciencedaily.com/releases/2005/05/050516055748.htm>.
University Of Pennsylvania School Of Medicine. (2005, May 16). Penn Study Shows Liver Receptor Key To Diet-dependent Differences In Blood Lipid Levels. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2005/05/050516055748.htm
University Of Pennsylvania School Of Medicine. "Penn Study Shows Liver Receptor Key To Diet-dependent Differences In Blood Lipid Levels." ScienceDaily. www.sciencedaily.com/releases/2005/05/050516055748.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins