Featured Research

from universities, journals, and other organizations

Nature As Important As Nurture In Developing Ability For Flexible Self-control

Date:
May 18, 2005
Source:
Vanderbilt University
Summary:
Your ability to follow the rules of the road when driving on unfamiliar streets exists thanks to the way your pre-teen life experiences influenced the development of your brain. Individuals deprived of normal life experiences may lack this ability to control their behavior in novel situations, a new computer model suggests, providing insight into how nature and nurture may interact in the development of self-control.

NASHVILLE, Tenn. – Your ability to follow the rules of the road when driving on unfamiliar streets exists thanks to the way your pre-teen life experiences influenced the development of your brain. Individuals deprived of normal life experiences may lack this ability to control their behavior in novel situations, a new computer model suggests, providing insight into how nature and nurture may interact in the development of self-control.

The findings by Vanderbilt University computational neuroscientist David Noelle and his colleagues were published in the May 17, 2005, issue of the Proceedings of the National Academy of Sciences.

“This model is the first to offer an explanation of how the neural circuits that allow us to apply rules and strategies to new situations develop,” Noelle, assistant professor of computer science and psychology, said. “Our model provides an account of how the special properties of certain brain systems combine with life experiences to allow us to apply what we have learned to new situations. This account sheds light on why this ability sometimes fails, and on how brain damage can impact this ability.”

The computer model is also the first of its kind capable of completing a variety of tests commonly used to determine if a patient has suffered injury to the frontal lobes of the brain. When inflicted with simulated damage, the model exhibited behaviors seen in people with frontal lobe damage.

“This computer model can provide insight into what causes the self-control deficits seen in individuals with damage to the frontal lobe,” Noelle said. “An even more exciting prospect, which we are just beginning to explore, is the possibility that the model will help us understand the neural basis of developmental disorders involving flexible cognitive control, such as ADHD and autism spectrum disorders.”

Researchers have known for some time that cognitive control, which is our ability to respond in an appropriate way even when faced with strong impulses to do otherwise, appears to depend on a brain area known as the prefrontal cortex. It is also known that the prefrontal cortex develops slowly compared to other brain areas and only matures late in adolescence.

The computer model developed by Noelle and his colleagues offers the first detailed explanation of how the special properties of the prefrontal cortex allow it to learn from life experiences and to flexibly identify appropriate rules, goals and intentions and apply them in new situations.

“Our model provides an account of how nature, in the form of specific neurobiological mechanisms, and nurture, in the form of breadth of experience, interact to produce flexible self-control,” Noelle said.

The use of computer simulation methods allowed Noelle and his colleagues to examine hypothetical cases that cannot be ethically investigated in the laboratory, such as removing the special physiological properties of prefrontal neurons or grossly limiting the range of experiences provided during development. These analyses revealed that prefrontal neural specializations and exposure to tasks that require the extended exercise of cognitive control are both necessary for the proper development of prefrontal cortex. When either was absent, the model became inflexible – it could not apply rules or strategies to situations that differed from the ones present when it originally learned the rules or strategies.

The model also offers additional information about why the prefrontal cortex takes so long to mature.

“Since the prefrontal cortex imposes control on other brain areas, those other areas must stabilize before the prefrontal cortex can learn how to control them,” Noelle said. “Our computer simulation results show the simulated prefrontal cortex maturing only after other interacting brain systems mature.”

Noelle is a member of the Vanderbilt Center for Integrative and Cognitive Neuroscience. His co-authors on this research were Nicolas Rougier and Randall O’Reilly, University of Colorado; Todd Braver, Washington University; and Jonathan Cohen, Princeton University. The work was supported by the Office of Naval Research Grants and the National Institutes of Health.


Story Source:

The above story is based on materials provided by Vanderbilt University. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University. "Nature As Important As Nurture In Developing Ability For Flexible Self-control." ScienceDaily. ScienceDaily, 18 May 2005. <www.sciencedaily.com/releases/2005/05/050518200708.htm>.
Vanderbilt University. (2005, May 18). Nature As Important As Nurture In Developing Ability For Flexible Self-control. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2005/05/050518200708.htm
Vanderbilt University. "Nature As Important As Nurture In Developing Ability For Flexible Self-control." ScienceDaily. www.sciencedaily.com/releases/2005/05/050518200708.htm (accessed April 20, 2014).

Share This



More Mind & Brain News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins