Featured Research

from universities, journals, and other organizations

Laser Technique Used To Build Micro-Structures On A Human Hair Without Harming It

Date:
May 23, 2005
Source:
Boston College
Summary:
Researchers in the laboratory of Boston College Chemistry Professor John T. Fourkas have demonstrated the fabrication of microscopic polymeric structures on top of a human hair, without harming it.

Shown in this image are electron microscopy images at increasing magnification of a representative structure created on a human hair. The strokes on the letters are more than 20 times smaller than the diameter of the hair. The researchers can readily create structures with features that are more than ten times smaller, which further suggests that it may ultimately prove possible to use this technique to create functional structures directly on single cells. (PHOTO CREDIT: Christopher N. LaFratta)

CHESTNUT HILL, MA (5-5-04) -- Researchers in the laboratory of Boston College Chemistry Professor John T. Fourkas have demonstrated the fabrication of microscopic polymeric structures on top of a human hair, without harming it.

Fourkas, in collaboration with Boston College Physics Professor Michael J. Naughton and Professors Malvin C. Teich and Bahaa E. A. Saleh of the Department of Electrical and Computer Engineering at Boston University, used a technique called multiphoton-absorption photopolymerization (MAP), in which a polymer can be deposited at the focal point of a laser beam; scanning of the laser beam in a desired pattern then allows for the formation of intricate, three-dimensional patterns. This technique, also being explored by a handful of other groups worldwide, makes it possible to create features that are 1000 times smaller than the diameter of a human hair.

These new results show for the first time that MAP can be used to fabricate structures nondestructively on biomaterials, and point the way towards applications of MAP in the creation of miniature biodevices, which could include micromanipulators for cells or even individual protein or DNA molecules.

The findings will be published in the June 1 issue of Journal of Applied Physics.

The originial purpose of the study was to demonstrate that intricate and resilient structures could be created with MAP using inexpensive and readily-available materials.

In order to demonstrate the size of the features that could be created, the researchers fabricated structures near a human hair, and in the course of these experiments they discovered that it was also possible to fabricate structures on the hair itself.

"We built the structure on top of the hair with a material that is akin to plexiglass," said Fourkas. "One of the really exciting and unexpected things about this is that we found that we could make this structure on the hair without harming it in any way. This suggests that we could accomplish the same with other biological materials. One could imagine, for instance, building devices directly on skin, blood vessels, and eventually even a living cell. While this idea is currently in the realm of science fiction, our results represent an important step in that direction.

"On the level of individual cells, one can imagine making devices that can tether cells to a surface or to each other, or that allow the delivery of particular chemicals to the cell, or that monitor processes within the cell," said Fourkas. "On a larger scale, if the same sort of structures can be constructed from biocompatible materials one can imagine applications in drug delivery and medical monitoring, among other areas."

Three-dimensional structures created with this technique also have the potential to be used in other miniature devices, such as optical communications hardware: fiber optics and the hardware that is used to interface them with electronics.

"While writing a structure on a hair does not have direct bearing on optical communications," Fourkas said, "on the other hand, we can and have done exactly the same sort of thing on optical fibers that are of comparable size, and this does have direct bearing."


Story Source:

The above story is based on materials provided by Boston College. Note: Materials may be edited for content and length.


Cite This Page:

Boston College. "Laser Technique Used To Build Micro-Structures On A Human Hair Without Harming It." ScienceDaily. ScienceDaily, 23 May 2005. <www.sciencedaily.com/releases/2005/05/050523092146.htm>.
Boston College. (2005, May 23). Laser Technique Used To Build Micro-Structures On A Human Hair Without Harming It. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2005/05/050523092146.htm
Boston College. "Laser Technique Used To Build Micro-Structures On A Human Hair Without Harming It." ScienceDaily. www.sciencedaily.com/releases/2005/05/050523092146.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins