Featured Research

from universities, journals, and other organizations

A Continent Split By Climate Change: New Study Projects Drought In Southern Africa, Rain In Sahel

Date:
May 24, 2005
Source:
National Center for Atmospheric Research/University Corporation for Atmospheric Research
Summary:
A new analysis of Africa's past and future climate shows that the Sahel region, which experienced catastrophic drought until rains returned in the 1990s, could experience wetter monsoons for decades to come. However, drought across southern Africa is projected to intensify further. Oceanic warming consistent with an increase in greenhouse gases appears to be a factor in these expected 21st-century changes to Africa's monsoons.

Drought destroyed the corn crop of this farmer in Lisutu, Zambia, in 2002. New analyses from NCAR and NOAA suggest that drought may intensify across southern Africa.
Credit: Photo 2002 Richard Lord / UMCOR

BOULDER - A new analysis of Africa's past and future climate shows that the Sahel region, which experienced catastrophic drought until rains returned in the 1990s, could experience wetter monsoons for decades to come. However, drought across southern Africa is projected to intensify further. Oceanic warming consistent with an increase in greenhouse gases appears to be a factor in these expected 21st-century changes to Africa's monsoons.

James Hurrell of the National Center for Atmospheric Research (NCAR) will present the findings on May 24 in New Orleans at the spring meeting of the American Geophysical Union. The study, conducted with Martin Hoerling (National Oceanic and Atmospheric Administration), was supported by NOAA and the National Science Foundation, NCAR's primary sponsor.

The analysis, which draws on 60 simulations of global climate from five computer models, provides new evidence linking drought in southern Africa to the warming of the Indian Ocean. However, it contradicts earlier studies that also connected the Sahelian drought of northern Africa to the Indian Ocean. Instead, the new results point to a late 20th-century cooling of the North Atlantic Ocean as having been key to Sahelian drought. A subsequent switch to North Atlantic warming, partly consistent with the impact of greenhouse gas increases, is the main factor behind the Sahel's recent swing from drought to moist conditions, the researchers believe.

"Changes in the Indian and Atlantic oceans are causing large regional effects in Africa, and these have substantial impacts on people. Now we can explain these climatic effects," says Hurrell.

Recurrent drought since the 1970s has plagued southern Africa, including Angola, Zambia, and Zimbabwe. Meanwhile, the nearby Indian Ocean has warmed more than 1 degree Celsius (0.6 degree Fahrenheit) since 1950. As showers and thunderstorms develop in the rising air above the warming ocean, says Hurrell, they help lead to sinking air and drought in a surrounding ring that includes southern Africa.

"In our models, the Indian Ocean shows very clear and dramatic warming into the future, which means more and more drought for southern Africa," says Hurrell. "It is consistent with what we would expect from an increase in greenhouse gases."

Hurrell and Hoerling compared model results from 1950-99 to several control runs that omitted the Indian Ocean warming. None of those runs showed the magnitude of drying that actually occurred in southern Africa. When the models did include the Indian Ocean warming, southern Africa consistently dried out. The models also project that by 2049, monsoons across southern Africa could be 10% to 20% drier than the 1950-99 average.

A different process appears to shape rainfall in the Sahel. When sea-surface temperatures are warmer in the South Atlantic than in the North, it pulls the Sahelian monsoon cycle south as well, depriving the region of its usual rains.

"This was the situation during much of the latter half of the 20th century." says Hurrell. "We believe the North Atlantic Ocean cooling was natural and masked an expected greenhouse-gas warming effect."

Since 1990, the sea-surface temperature pattern has reversed, warming more rapidly in the North Atlantic than in the South. The models examined by Hurrell and Hoerling show this trend intensifying in future decades. They project that the Sahel monsoon will be some 20% to 30% wetter by 2049 compared to the 1950-99 average.

The warming of Indian Ocean waters is well beyond the range expected from natural processes. This strengthens the case that greenhouse gases are involved, says Hurrell. In the Atlantic, natural variability affects ocean temperatures more strongly, making it more difficult to attribute changes there to greenhouse-gas effects.

Paleoclimate records show that even greater climate swings have occurred in Africa's monsoons, most likely related to past variations in solar output and in Earth's orbit. "From a paleoclimate perspective, the recent African dryings appear to be neither unusual nor extreme," says Hurrell.

Monsoon rains, critical to life in much of Africa, shift north and south with the seasons. They normally reach the Sahel from July to September and the southern part of the continent from February into April. Low-pressure centers moving west from the Sahel during the monsoon often serve as seed for tropical storms and hurricanes in the North Atlantic. Hurrell's work does not address the possible impact of increased rains in the Sahel on future Atlantic hurricane activity.

For their study, Hurrell and Hoerling examined output from computer models at NCAR, NASA, NOAA, the European Centre for Medium-Range Weather Forecasts, and France's National Center for Meteorological Research (CNRM).

###

NCAR'S primary sponsor is the National Science Foundation. Opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of the National Science Foundation.



Story Source:

The above story is based on materials provided by National Center for Atmospheric Research/University Corporation for Atmospheric Research. Note: Materials may be edited for content and length.


Cite This Page:

National Center for Atmospheric Research/University Corporation for Atmospheric Research. "A Continent Split By Climate Change: New Study Projects Drought In Southern Africa, Rain In Sahel." ScienceDaily. ScienceDaily, 24 May 2005. <www.sciencedaily.com/releases/2005/05/050524100859.htm>.
National Center for Atmospheric Research/University Corporation for Atmospheric Research. (2005, May 24). A Continent Split By Climate Change: New Study Projects Drought In Southern Africa, Rain In Sahel. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2005/05/050524100859.htm
National Center for Atmospheric Research/University Corporation for Atmospheric Research. "A Continent Split By Climate Change: New Study Projects Drought In Southern Africa, Rain In Sahel." ScienceDaily. www.sciencedaily.com/releases/2005/05/050524100859.htm (accessed July 29, 2014).

Share This




More Earth & Climate News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins