Featured Research

from universities, journals, and other organizations

New Technique Produces 10-carat Diamond

Date:
May 29, 2005
Source:
National Science Foundation
Summary:
Researchers at the Carnegie Institution of Washington, D.C. have produced 10-carat, half-inch thick single-crystal diamonds at rapid growth rates (100 micrometers per hour) using a chemical vapor deposition (CVD) process. The size is approximately five times that of commercially available diamonds produced by the standard high-pressure/high-temperature (HPHT) method and other CVD techniques.

This 5-carat diamond was laser-cut from a 10-carat single crystal produced by high-growth rate CVD.
Credit: Carnegie Institution

Researchers at the Carnegie Institution of Washington, D.C. have produced 10-carat, half-inch thick single-crystal diamonds at rapid growth rates (100 micrometers per hour) using a chemical vapor deposition (CVD) process. The size is approximately five times that of commercially available diamonds produced by the standard high-pressure/high-temperature (HPHT) method and other CVD techniques.

In addition, the team has made colorless single-crystal diamonds, transparent from the ultraviolet to infrared wavelengths with their CVD process.

Most HPHT synthetic diamond is yellow and most CVD diamond is brown, limiting their optical applications. Colorless diamonds are costly to produce and so far those reported are small. This limits general applications of these diamonds as gems, in optics, and in scientific research. Last year, the Carnegie researchers found that HPHT annealing enhances not only the optical properties of some CVD diamond, but also the hardness. Using new techniques, the Carnegie scientists have now produced transparent diamond using a CVD method without HPHT annealing.

"High-quality crystals more than three carats are very difficult to produce using the conventional approach," said scientist Russell Hemley, who leads the diamond effort at Carnegie. "Several groups have begun to grow diamond single crystals by CVD, but large, colorless, and flawless ones remain a challenge. Our fabrication of 10-carat, half-inch, CVD diamonds is a major breakthrough."

The results were reported at the 10th International Conference on New Diamond Science and Technology, Tsukuba, Japan, on May 12, 2005, and will be reported at the Applied Diamond Congress in Argonne, Ill., May 18, 2005.

"The rapid synthesis of large, single-crystal diamond is a remarkable scientific achievement, and has implications for a wide range of scientific and commercial applications," said David Lambert, program director in the National Science Foundation (NSF)'s earth sciences division, which funded the research.

To further increase the size of the crystals, the Carnegie researchers grew gem-quality diamonds sequentially on the six faces of a substrate diamond plate with the CVD process. By this method, three-dimensional growth of colorless single-crystal diamond in the inch-range is achievable.

Finally, new shapes have been fabricated with the blocks of the CVD single crystals.

The standard growth rate is 100 micrometers per hour for the Carnegie process, but growth rates in excess of 300 micrometers per hour have been reached, and 1 millimeter per hour may be possible. With the colorless diamond produced at ever higher growth rate and low cost, large blocks of diamond should be available for a variety of applications.

"The diamond age is upon us," said Hemley.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "New Technique Produces 10-carat Diamond." ScienceDaily. ScienceDaily, 29 May 2005. <www.sciencedaily.com/releases/2005/05/050527105139.htm>.
National Science Foundation. (2005, May 29). New Technique Produces 10-carat Diamond. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2005/05/050527105139.htm
National Science Foundation. "New Technique Produces 10-carat Diamond." ScienceDaily. www.sciencedaily.com/releases/2005/05/050527105139.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins