Featured Research

from universities, journals, and other organizations

Antibody Combined With Cancer Drug Shows Promise Against Breast Tumors

Date:
July 1, 2005
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
An antibody that targets the blood vessels nourishing tumors significantly reduced breast cancer formation and growth in mice when combined with a current cancer drug, according to researchers at UT Southwestern Medical Center.

Dr. Philip Thorpe, professor of pharmacology, and other UT Southwestern researchers have shown that an antibody that targets blood vessels nourishing tumors significantly reduced breast cancer formation and growth in mice when combined with a current cancer drug.
Credit: Image courtesy of University Of Texas Southwestern Medical Center At Dallas

DALLAS - May 15, 2005 - An antibody that targets the blood vessels nourishing tumors significantly reduced breast cancer formation and growth in mice when combined with a current cancer drug, according to researchers at UT Southwestern Medical Center.

Related Articles


Their work appears in today's issue of Cancer Research.

"This antibody could enhance the therapeutic efficacy of the drug docetaxel in breast cancer patients," said Dr. Philip Thorpe, professor of pharmacology at UT Southwestern and senior author of the research. "The combination merits further scrutiny as a potential treatment for human cancer."

Docetaxel is one of the most effective chemotherapeutic drugs for treating breast, ovarian and prostate cancer, but its use in treating other cancers is limited by its toxicity.

In their study of mice, Drs. Thorpe and Xianming Huang, assistant professor of pharmacology in the Harold C. Simmons Comprehensive Cancer Center, found the antibody compound 3G4 was effective as a vascular targeting agent (VTA) when used with docetaxel. VTAs are designed to find and destroy blood vessels within cancerous tumors, cutting off their blood supply.

Specifically, mice with human breast tumors treated with 3G4 and docetaxel had a 93 percent reduction in overall tumor growth. The injected breast cancer cells also stimulated the growth of tumor colonies in the lungs, and the drug combination reduced the average number of those colonies by 93 percent, with half of the mice not developing any lung tumors.

The combination of 3G4 and docetaxel was much better than either compound used by itself, Dr. Thorpe said. In mice with breast cancer tumors, growth was suppressed by 50 percent using 3G4 alone and 70 percent for docetaxal alone. The reduction in lung tumor colonies was 82 percent with 3G4 alone and 78 percent with docetaxal alone.

Peregrine Pharmaceuticals is developing a version of 3G4 called Tarvacin for cancer treatment and recently received approval from the Food and Drug Administration for a phase I clinical trial. The compound was discovered by Dr. Thorpe's lab, and Peregrine has a sponsored research agreement with UT Southwestern to further develop the drug.

"We are currently investigating whether the enhanced therapeutic efficacy with 3G4 and docetaxel extends to other tumor models and other conventional therapies," Dr. Thorpe said.

VTAs like 3G4 target tumor vessels by selectively binding to a certain component in the membranes of endothelial cells that line tumor blood vessels. This component, called an anionic phospholipid, faces the interior of cells in normal blood vessels.

In tumor blood vessels, however, changes in the tumor environment cause the phospholipid to flip inside out and be positioned on the external surface. VTAs then can bind to this exposed phospholipid, causing the body's white cells to attack and destroy the vessels feeding the tumor.

By targeting receptors unique to tumor vessels, vascular targeting agents kill tumors without causing damage to surrounding healthy tissue. They also reduce the risk of side effects by operating at lower doses than traditional cancer therapies because they are effective without needing to penetrate the innermost layer of a tumor.

And, while drug resistance caused by the instability and mutability of cancer cells is a significant problem with conventional therapies that target tumor cells, cells targeted by VTAs do not mutate to become drug resistant, Dr. Thorpe said.

Tarvacin itself has shown promise in mice against cancers in the fibrous tissues, brain cancers and Hodgkin's disease.

Mary Bennett, a UT Southwestern technician, also contributed to the Cancer Research study.

Research was funded by Peregrine Pharmaceuticals, a grant from the Gillson Longenbaugh Foundation and a Specialized Programs of Research Excellence (SPORE) grant in lung cancer research through the National Cancer Institute. Further studies are being funded by the Susan G. Komen Breast Cancer Foundation.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "Antibody Combined With Cancer Drug Shows Promise Against Breast Tumors." ScienceDaily. ScienceDaily, 1 July 2005. <www.sciencedaily.com/releases/2005/06/050630061607.htm>.
University Of Texas Southwestern Medical Center At Dallas. (2005, July 1). Antibody Combined With Cancer Drug Shows Promise Against Breast Tumors. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2005/06/050630061607.htm
University Of Texas Southwestern Medical Center At Dallas. "Antibody Combined With Cancer Drug Shows Promise Against Breast Tumors." ScienceDaily. www.sciencedaily.com/releases/2005/06/050630061607.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins