Featured Research

from universities, journals, and other organizations

Ethanol And Biodiesel From Crops Not Worth The Energy

Date:
July 6, 2005
Source:
Cornell University
Summary:
David Pimentel, professor of ecology and agriculture at Cornell University, has co-authored an analysis that finds that producing ethanol or biodiesel from corn and other biomass uses more energy than is produced.

Ecologist David Pimentel, shown here pumping gas, says that his analysis shows that producing ethanol uses more energy than the resulting fuel generates.
Credit: Photo Chris Hallman, University Photography / Copyright Cornell University

ITHACA, N.Y. -- Turning plants such as corn, soybeans and sunflowers into fuel uses much more energy than the resulting ethanol or biodiesel generates, according to a new Cornell University and University of California-Berkeley study.

Related Articles


"There is just no energy benefit to using plant biomass for liquid fuel," says David Pimentel, professor of ecology and agriculture at Cornell. "These strategies are not sustainable."

Pimentel and Tad W. Patzek, professor of civil and environmental engineering at Berkeley, conducted a detailed analysis of the energy input-yield ratios of producing ethanol from corn, switch grass and wood biomass as well as for producing biodiesel from soybean and sunflower plants. Their report is published in Natural Resources Research (Vol. 14:1, 65-76).

In terms of energy output compared with energy input for ethanol production, the study found that:

* corn requires 29 percent more fossil energy than the fuel produced;
* switch grass requires 45 percent more fossil energy than the fuel produced; and
* wood biomass requires 57 percent more fossil energy than the fuel produced.

In terms of energy output compared with the energy input for biodiesel production, the study found that:

* soybean plants requires 27 percent more fossil energy than the fuel produced, and
* sunflower plants requires 118 percent more fossil energy than the fuel produced.

In assessing inputs, the researchers considered such factors as the energy used in producing the crop (including production of pesticides and fertilizer, running farm machinery and irrigating, grinding and transporting the crop) and in fermenting/distilling the ethanol from the water mix. Although additional costs are incurred, such as federal and state subsidies that are passed on to consumers and the costs associated with environmental pollution or degradation, these figures were not included in the analysis.

"The United State desperately needs a liquid fuel replacement for oil in the near future," says Pimentel, "but producing ethanol or biodiesel from plant biomass is going down the wrong road, because you use more energy to produce these fuels than you get out from the combustion of these products."

Although Pimentel advocates the use of burning biomass to produce thermal energy (to heat homes, for example), he deplores the use of biomass for liquid fuel. "The government spends more than $3 billion a year to subsidize ethanol production when it does not provide a net energy balance or gain, is not a renewable energy source or an economical fuel. Further, its production and use contribute to air, water and soil pollution and global warming," Pimentel says. He points out that the vast majority of the subsidies do not go to farmers but to large ethanol-producing corporations.

"Ethanol production in the United States does not benefit the nation's energy security, its agriculture, economy or the environment," says Pimentel. "Ethanol production requires large fossil energy input, and therefore, it is contributing to oil and natural gas imports and U.S. deficits." He says the country should instead focus its efforts on producing electrical energy from photovoltaic cells, wind power and burning biomass and producing fuel from hydrogen conversion.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Ethanol And Biodiesel From Crops Not Worth The Energy." ScienceDaily. ScienceDaily, 6 July 2005. <www.sciencedaily.com/releases/2005/07/050705231841.htm>.
Cornell University. (2005, July 6). Ethanol And Biodiesel From Crops Not Worth The Energy. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2005/07/050705231841.htm
Cornell University. "Ethanol And Biodiesel From Crops Not Worth The Energy." ScienceDaily. www.sciencedaily.com/releases/2005/07/050705231841.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Humanoid Robot Can Recognise and Interact With People

Humanoid Robot Can Recognise and Interact With People

Reuters - Innovations Video Online (Apr. 20, 2015) An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Drones and Health Apps at Santiago's "Robotics Day"

Drones and Health Apps at Santiago's "Robotics Day"

AFP (Apr. 20, 2015) Latin American robotics experts gather in Santiago, Chile for "Robotics Day". Video provided by AFP
Powered by NewsLook.com
Japan Humanoid Robot Receives Customers at Department Store

Japan Humanoid Robot Receives Customers at Department Store

AFP (Apr. 20, 2015) She can smile, she can sing and she can give you guidance at one of the most upscale department stores in Tokyo...a female-looking humanoid makes her debut as a receptionist Video provided by AFP
Powered by NewsLook.com
Pee-Power Toilet to Light Up Disaster Zones

Pee-Power Toilet to Light Up Disaster Zones

Reuters - Innovations Video Online (Apr. 20, 2015) Students and staff are being asked to use a prototype urinal to &apos;donate&apos; urine to fuel microbial fuel cell (MFC) stacks that generate electricity to power lighting. The developers hope the pee-power technology will light toilet cubicles in refugee camps, where women are often at risk of assault in poorly lit sanitation areas. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins