Featured Research

from universities, journals, and other organizations

Detecting The Traces Of Mystery Matter

Date:
August 4, 2005
Source:
University of California - Davis
Summary:
Using high-speed collisions between gold atoms, scientists think they have re-created one of the most mysterious forms of matter in the universe -- quark-gluon plasma. This form of matter was present during the first microsecond of the Big Bang and may still exist at the cores of dense, distant stars. UC Davis physics professor Daniel Cebra is one of 543 collaborators on the research. His main role was building the electronic listening devices that collect information about the collisions, a job he compared to "troubleshooting 120,000 stereo systems."

A splash of subatomic particles is created by the collision of gold atom nuclei traveling at nearly the speed of light in Brookhaven National Laboratory's Relativistic Heavy Ion Collider. (Brookhaven National Laboratory/STAR Collaboration/courtesy graph)

Using high-speed collisions between gold atoms, scientists thinkthey have re-created one of the most mysterious forms of matter in theuniverse -- quark-gluon plasma. This form of matter was present duringthe first microsecond of the Big Bang and may still exist at the coresof dense, distant stars.

Related Articles


UC Davis physics professor Daniel Cebra is one of 543 collaboratorson the research. His main role was building the electronic listeningdevices that collect information about the collisions, a job hecompared to "troubleshooting 120,000 stereo systems."

Now, using those detectors, "we look for trends in what happenedduring the collision to learn what the quark-gluon plasma is like," hesaid.

"We have been trying to melt neutrons and protons, the buildingblocks of atomic nuclei, into their constituent quarks and gluons,"Cebra said. "We needed a lot of heat, pressure and energy, alllocalized in a small space."

The scientists produced the right conditions with head-on collisionsbetween the nuclei of gold atoms. The resulting quark-gluon plasmalasted an extremely short time -- less than 10-20 seconds, Cebra said.But the collision left tracings that the scientists could measure.

"Our work is like accident reconstruction," Cebra said. "We seefragments coming out of a collision, and we construct that informationback to very small points."

Quark-gluon plasma was expected to behave like a gas, but the datashows a more liquid-like substance. The plasma is less compressiblethan expected, which means that it may be able to support the cores ofvery dense stars.

"If a neutron star gets large and dense enough, it may go through aquark phase, or it may just collapse into a black hole," Cebra said."To support a quark star, the quark-gluon plasma would need rigidity.We now expect there to be quark stars, but they will be hard to study.If they exist, they're semi-infinitely far away."

The project is led by Brookhaven National Laboratory and LawrenceBerkeley National Laboratory, with collaborators at 52 institutionsworldwide. The work was done in Brookhaven's Relativistic Heavy IonCollider (RHIC).


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Davis. "Detecting The Traces Of Mystery Matter." ScienceDaily. ScienceDaily, 4 August 2005. <www.sciencedaily.com/releases/2005/07/050730093720.htm>.
University of California - Davis. (2005, August 4). Detecting The Traces Of Mystery Matter. ScienceDaily. Retrieved January 24, 2015 from www.sciencedaily.com/releases/2005/07/050730093720.htm
University of California - Davis. "Detecting The Traces Of Mystery Matter." ScienceDaily. www.sciencedaily.com/releases/2005/07/050730093720.htm (accessed January 24, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, January 24, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins