Featured Research

from universities, journals, and other organizations

New Method For Quantum Cooling Discovered

Date:
August 9, 2005
Source:
University of Texas at Austin
Summary:
Physicists at The University of Texas at Austin have discovered a new technique for cooling atoms and molecules that will allow them to study quantum physics more effectively with a greater variety of particles. The researchers have found a way to use lasers to form walls that allow atoms and molecules to pass through in one direction, but do not allow them to return.

AUSTIN, Texas—Physicists at The University of Texas atAustin have discovered a new technique for cooling atoms and moleculesthat will allow them to study quantum physics more effectively with agreater variety of particles.

The researchers have found a way touse lasers to form walls that allow atoms and molecules to pass throughin one direction, but do not allow them to return.

The technique could lead to advances in atomic clocks, which are used to standardize time worldwide.

Dr.Mark Raizen of the Center for Nonlinear Dynamics and his colleaguesdescribe the one-way wall technique in Physical Review Letters andEurophysics Letters published earlier this year.

Raizen and hiscolleagues show that atoms and molecules can first be trapped in a boxwhose walls are built of laser light. The box can then be separatedwith an optical wall constructed of two lasers. These two lasers workin concert to allow atoms and molecules to pass through to one side ofthe box but block them from getting back to the other side. The boxthen has two distinct spaces, one filled with particles and one void ofparticles.

Raizen’s one-way wall extends the capabilities oflaser and evaporative cooling, which have been limited to cooling asmall number of atoms in the periodic table. The new method isapplicable to a greater diversity of atoms and molecules and can expandthe capability of researchers to test laws of quantum physics atextremely low temperatures.

“In nature, the cell wall is the classic example where atoms and molecules move through a one-way barrier,” Raizen said.

Cellsregulate the flow of ions through one-way channels in order to createosmotic pressure. Raizen and his colleagues illustrate it is possibleto create a manmade barrier to such atomic movement.

“The beauty of the one-way atomic wall,” Raizen said, “is that there is almost no increase in kinetic energy.”

Withno increase in kinetic energy comes no increase in heat. By expandingand contracting the space that holds the trapped atoms and molecules,the temperature of this space, which Raizen calls a “quantumrefrigerator,” can be lowered until it reaches very close to AbsoluteZero.

It’s at these ultra cold temperatures, -459 degrees Fahrenheit, that quantum physicists can manipulate atoms and molecules.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas at Austin. "New Method For Quantum Cooling Discovered." ScienceDaily. ScienceDaily, 9 August 2005. <www.sciencedaily.com/releases/2005/08/050809064837.htm>.
University of Texas at Austin. (2005, August 9). New Method For Quantum Cooling Discovered. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2005/08/050809064837.htm
University of Texas at Austin. "New Method For Quantum Cooling Discovered." ScienceDaily. www.sciencedaily.com/releases/2005/08/050809064837.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins