Featured Research

from universities, journals, and other organizations

Sticky Mutant Proteins Implicated In Lou Gehrig's Disease

Date:
August 17, 2005
Source:
American Society for Biochemistry and Molecular Biology
Summary:
A new study indicates that mutant Cu/Zn superoxide dismutase (SOD1) enzymes that are associated with an inherited form of Lou Gehrig's disease cause the protein to become sticky in tissues. Partial unfolding of the mutant protein can expose hydrophobic residues that may promote abnormal interactions with other proteins or membranes in the cell.

Bethesda, MD  -- A new study indicates that mutant Cu/Znsuperoxide dismutase (SOD1) enzymes that are associated with aninherited form of Lou Gehrig's disease cause the protein to becomesticky in tissues. Partial unfolding of the mutant protein can exposehydrophobic residues that may promote abnormal interactions with otherproteins or membranes in the cell.

Related Articles


The research appears as the "Paper of the Week" in the August 19issue of the Journal of Biological Chemistry, an American Society forBiochemistry and Molecular Biology journal.

Over 5,600 people in the U.S. are diagnosed with amyotrophiclateral sclerosis (ALS) or Lou Gehrig's disease each year. About 30,000Americans have the disease at any given time, and 10% of cases areinherited.

"Amyotrophic lateral sclerosis is a neurodegenerative disorderin which neurons of the motor pathways in the brain and spinal corddie," explains Dr. Lawrence J. Hayward of the University ofMassachusetts Medical School. "It typically strikes during middle age,and although it may start with only mild weakness, the symptoms canspread insidiously over months to impair mobility, speech andswallowing, and ultimately the muscles required for respiration."

Despite the prevalence of ALS, the biological mechanisms thatkill the motor neurons in most patients are incompletely understood.However, for a fraction of inherited ALS patients, mutations in thegene for SOD1 cause the disease by creating a toxic enzyme. Evidencesuggests that misfolding or partial unfolding of mutant SOD1 proteinsin these patients might be key to the toxicity.

Hoping to learn more about how SOD1 contributes to ALS, Dr.Hayward began to study the properties of several ALS-causing SOD1mutants in research sponsored by the National Institutes of Health andthe ALS Association.

"Our efforts have focused upon trying to explain how over 100different mutant forms of SOD1 cause inherited ALS," says Dr. Hayward."The initial results were puzzling because some mutations had dramaticeffects on copper and zinc binding, enzymatic activity, and stabilityof the protein, but many other mutations seemed to cause only subtlechanges in these properties in vitro. Yet all of the mutants were knownto be toxic in patients."

As a result of several additional experiments done in his laband by other groups, Dr. Hayward suspected that the mutant proteinsmight be more vulnerable than the normal enzyme to specific stresses intissues. In their Journal of Biological Chemistry paper, Dr. Haywardand his colleagues at the University of Massachusetts Medical Schoolshow that when the mutant SOD1 enzymes are exposed to reagents that candisrupt some of the protein's bonds or remove its metal ions, theybecome much stickier than the normal protein.

"The mutants, but not the normal SOD1, adhere to a hydrophobicor 'greasy' surface, and this property could promote abnormalinteractions with other proteins or membranes in the cell," explainsDr. Hayward. "How well different tissues can handle this burden ofsticky protein, especially during aging, may be one factor thatdetermines which cell types are most vulnerable in the disease. It wasinteresting to us that the adherent forms were not restricted to thenervous system in the mouse models but were also seen in other tissuessuch as heart and skeletal muscle. It is possible that this propertycould contribute to abnormalities in muscle, while other tissues suchas kidney do not accumulate hydrophobic SOD1 despite a high expressionlevel of the mutants."

These results may lead to new treatments for some forms of ALS.For example, if researchers can minimize the hydrophobic exposure orcan understand how certain tissues prevent build-up of the sticky formsof SOD1, they might be able to boost defenses in tissues known to besusceptible to mutant SOD1 accumulation.

###

The Journal of Biological Chemistry's Papers of the Week is anonline feature which highlights the top one percent of papers receivedby the journal. Brief summaries of the papers and explanations of whythey were selected for this honor can be accessed directly from thehome page of the Journal of Biological Chemistry online at www.jbc.org.

The American Society for Biochemistry and Molecular Biology(ASBMB) is a nonprofit scientific and educational organization withover 11,000 members in the United States and internationally. Mostmembers teach and conduct research at colleges and universities. Othersconduct research in various government laboratories, nonprofit researchinstitutions, and industry.

Founded in 1906, the Society is based in Bethesda, Maryland, onthe campus of the Federation of American Societies for ExperimentalBiology. The Society's primary purpose is to advance the sciences ofbiochemistry and molecular biology through its publications, theJournal of Biological Chemistry, The Journal of Lipid Research,Molecular and Cellular Proteomics, and Biochemistry and MolecularBiology Education, and the holding of scientific meetings.

For more information about ASBMB, see the Society's website at www.asbmb.org.


Story Source:

The above story is based on materials provided by American Society for Biochemistry and Molecular Biology. Note: Materials may be edited for content and length.


Cite This Page:

American Society for Biochemistry and Molecular Biology. "Sticky Mutant Proteins Implicated In Lou Gehrig's Disease." ScienceDaily. ScienceDaily, 17 August 2005. <www.sciencedaily.com/releases/2005/08/050810133651.htm>.
American Society for Biochemistry and Molecular Biology. (2005, August 17). Sticky Mutant Proteins Implicated In Lou Gehrig's Disease. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2005/08/050810133651.htm
American Society for Biochemistry and Molecular Biology. "Sticky Mutant Proteins Implicated In Lou Gehrig's Disease." ScienceDaily. www.sciencedaily.com/releases/2005/08/050810133651.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins