Featured Research

from universities, journals, and other organizations

K-State Researchers Designing Better Drug To Treat Cystic Fibrosis

Date:
September 4, 2005
Source:
Kansas State University
Summary:
John Tomich, a Kansas State University professor of biochemistry, spends much of his day thinking about how to design a better drug to treat cystic fibrosis. A chronic and progressive disease, cystic fibrosis is usually diagnosed in childhood. It causes mucus to become thick, dry and sticky. The mucus builds up and clogs passages in the lungs, pancreas and other organs in the body.

MANHATTAN, KAN. -- John Tomich, a Kansas State University professor ofbiochemistry, spends much of his day thinking about how to design abetter drug to treat cystic fibrosis.

A chronic and progressive disease, cystic fibrosis is usuallydiagnosed in childhood. It causes mucus to become thick, dry andsticky. The mucus builds up and clogs passages in the lungs, pancreasand other organs in the body.

There is no cure for cystic fibrosis. Management of the diseasevaries from person to person and generally focuses on treatingrespiratory and digestive problems to prevent infection and othercomplications. Treatment usually involves a combination of medicationsand home treatment methods, such as respiratory and nutritionaltherapies.

Tomich, along with colleagues Takeo Iwamoto, a K-State researchassistant professor, and Shawnalea J. Frazier, senior in biochemistry,Haysville, have been working to understand how ions travel across cellmembranes, specifically the anion part of sodium chloride.

Tomich presented a paper on the trios' findings, "Assessing TheContributions of H-Bonding Donors to Permeation Rates and Selectivityin Self-Assembling Peptides that Form Chloride Selective Pores," Aug.28 at the Membrane Active, Synthetic Organic Compounds Symposium of theAmerican Chemical Society's national meeting and exposition inWashington, D.C.

"What's kind of an honor about this is we were one of the few,purely biochemical research groups who are presenting in thissymposium," Tomich said. "This is a section organized by organicchemists."

Tomich and his collaborators have used a series of single anddouble amino acid substitutions to modulate the activity of a channelforming peptide derived from the second transmembrane segment of thealpha subunit of the human spinal cord glycine receptor.

Tomich said chloride ions are hydrogen bond acceptors;consequently, it is hypothesized the hydroxyl function contributesstrongly to ion throughput across and/or ion selectivity within thechannel structures. Residue replacements in the peptide involving the13th and 17th positions were designed to correlate hydrogen-bondingstrength with selectivity and permeation rates. The hydrogen bondingstrengths of the amino acid side-chains correlate directly with anionselectivity and inversely with transport rates for the anion.

According to Tomich, these results will help in optimizing these two counteracting channel properties.

"Your body knows how to separate these things all by itself,"Tomich said. "Sodium is usually higher outside the cell, potassium ishigher inside the cell and chloride, depending on the cell type, can bethe same or different.

"The chemical mechanisms directing chloride binding andtransport are poorly understood," he said. "The mechanisms determininghow sodium, potassium and calcium get across are much better known.We're trying to find out how chloride actually gets across so we willthen be able to manipulate both the transport rates and selectivity."

Tomich began working on this many years ago. Over the past 15years, his lab has developed more than 200 sequences that showed variedion transport activity in synthetic membranes, as well as culturedepithelial cells and animals. From all of that they can changevirtually the way this ion channel assembles. Some of the compoundsthat he has designed work at very low concentrations but lack some ofthe chloride specificity that it once had. Their presentation discussedhow the researchers back-designed the channel pore so it can be morespecified for chloride.

"Our goal is to make a drug that would work efficiently andeffectively at low doses," Tomich said. "We have some early designsthat are highly selective for chloride, but you'd have to give them alot of the compound to see the effect."

###

Tomich's research is funded in part by a grant from the NationalInstitute of General Medical Sciences at the National Institutes ofHealth.


Story Source:

The above story is based on materials provided by Kansas State University. Note: Materials may be edited for content and length.


Cite This Page:

Kansas State University. "K-State Researchers Designing Better Drug To Treat Cystic Fibrosis." ScienceDaily. ScienceDaily, 4 September 2005. <www.sciencedaily.com/releases/2005/09/050904123904.htm>.
Kansas State University. (2005, September 4). K-State Researchers Designing Better Drug To Treat Cystic Fibrosis. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2005/09/050904123904.htm
Kansas State University. "K-State Researchers Designing Better Drug To Treat Cystic Fibrosis." ScienceDaily. www.sciencedaily.com/releases/2005/09/050904123904.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins