Featured Research

from universities, journals, and other organizations

Insight Into Our Sight: A New View On The Evolution Of The Eye Lens

Date:
September 27, 2005
Source:
Cell Press
Summary:
The evolution of complex and physiologically remarkable structures such as the vertebrate eye has long been a focus of intrigue and theorizing by biologists. In work reported this week in Current Biology, the evolutionary history of a critical eye protein has revealed a previously unrecognized relationship between certain components of vertebrate eyes and those of the more primitive light-sensing systems of invertebrates. The findings help clarify our conceptual framework for understanding how the vertebrate eye, as we know it, has emerged over evolutionary time.

The evolution of complex and physiologically remarkable structures suchas the vertebrate eye has long been a focus of intrigue and theorizingby biologists. In work reported this week in Current Biology, theevolutionary history of a critical eye protein has revealed apreviously unrecognized relationship between certain components ofvertebrate eyes and those of the more primitive light-sensing systemsof invertebrates. The findings help clarify our conceptual frameworkfor understanding how the vertebrate eye, as we know it, has emergedover evolutionary time.

Related Articles


The work is reported by Sebastian Shimeld at the University ofOxford and colleagues at the University of London and RadboudUniversity in The Netherlands.

Our sight relies on the ability of our eye to form a clear,focused image on the retina. The critical component in focusing is theeye lens, and the physical properties that underlie the transparency ofthe lens, as well as its ability to precisely refract light, arise fromthe high concentrations of special proteins called crystallins found inlens cells.

Fish, frogs, birds and mammals all experience image-formingvision, thanks to the fact that their eyes all express crystallins andform a lens; however, the vertebrates' nearest invertebrate relatives,such as sea squirts, have only simple eyes that detect light but areincapable of forming an image. This has lead to the view that the lensevolved within the vertebrates early in vertebrate evolution, and itraises a long-standing question in evolutionary biology: How could acomplex organ with such special physical properties have evolved?

In their new work, Shimeld and colleagues approached thisquestion by examining the evolutionary origin of one crystallin proteinfamily, known as the �?-crystallins. Focusing on sea squirts,invertebrate cousins of the vertebrate lineage, the researchers foundthat these creatures possess a single crystallin gene, which isexpressed in its primitive light-sensing system. The identification ofthe sea squirt's crystallin strongly suggests that it is the singlegene from which the vertebrate �?-crystallins evolved.

The researchers also found that, remarkably, expression of thesea squirt crystallin gene is controlled by genetic elements that alsorespond to the factors that control lens development in vertebrates:The researchers showed that when regulatory regions of the sea squirtgene are transferred to frog embryos, these regulatory elements drivegene expression in the tadpoles' own visual system, including the lens.This strongly suggests that prior to the evolution of the lens, therewas a regulatory link between two tiers of genes: those that wouldlater become responsible for controlling lens development, and thosethat would help give the lens its special physical properties. Thiscombination of genes appears to have then been co-opted in an earlyvertebrate during the evolution of its visual system, giving rise tothe lens.

###

The researchers include Sebastian M. Shimeld, University of Oxford,Oxford, United Kingdom; Andrew G. Purkiss, Orval A. Bateman, andChristine Slingsby of Birkbeck College University of London, UnitedKingdom; Ron P.H. Dirks and Nicolette H. Lubsen of Radboud University,Nijmegen, The Netherlands. This work was supported by the MedicalResearch Council, UK and the Biotechnology and Biological SciencesResearch Council.

Shimeld et al.: "Urochordate gamma-crystallin and theevolutionary origin of the vertebrate eye lens." Publishing in CurrentBiology, Vol. 15, pages 1684-1689, September 20, 2005. DOI10.1016/j.cub.2005.08.046 www.current-biology.com


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Insight Into Our Sight: A New View On The Evolution Of The Eye Lens." ScienceDaily. ScienceDaily, 27 September 2005. <www.sciencedaily.com/releases/2005/09/050926074038.htm>.
Cell Press. (2005, September 27). Insight Into Our Sight: A New View On The Evolution Of The Eye Lens. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2005/09/050926074038.htm
Cell Press. "Insight Into Our Sight: A New View On The Evolution Of The Eye Lens." ScienceDaily. www.sciencedaily.com/releases/2005/09/050926074038.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Praying Mantis Looks Long Before It Leaps

Praying Mantis Looks Long Before It Leaps

Reuters - Innovations Video Online (Mar. 5, 2015) — Slowed-down footage of the leaps of praying mantises show the insect&apos;s extraordinary precision, say researchers. Video provided by Reuters
Powered by NewsLook.com
Octopus Grabs Camera and Turns It Around On Photographer

Octopus Grabs Camera and Turns It Around On Photographer

Buzz60 (Mar. 5, 2015) — A photographer got the shot of a lifetime, or rather an octopus did, when it grabbed the camera and turned it around to take an amazing picture of the photographer. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Ringling Bros. Eliminating Elephant Acts

Ringling Bros. Eliminating Elephant Acts

AP (Mar. 5, 2015) — The Ringling Bros. and Barnum & Bailey Circus is ending its iconic elephant acts. The circus&apos; parent company, Feld Entertainment, told the AP exclusively that the acts will be phased out by 2018 over growing public concern about the animals. (March 5) Video provided by AP
Powered by NewsLook.com
Raw: Tourists Visit Rare Grey Whales in Mexico

Raw: Tourists Visit Rare Grey Whales in Mexico

AP (Mar. 4, 2015) — Once nearly extinct, grey whales now migrate in their thousands to Mexico&apos;s Vizcaino reserve in Baja California, in search of warmer waters to mate and give birth. Tourists flock to the reserve to see the whales, measuring up to 49 feet long. (March 4) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins