Featured Research

from universities, journals, and other organizations

Scientists Unravel How The Brits May Have Struck Gold In Olympic Sailing

Date:
October 10, 2005
Source:
University College London
Summary:
A study led by UCL (University College London) scientists has unravelled the physical mechanism behind the poorly understood weather phenomenon of coastal wind jets - which are thought to have helped the British sailing team strike gold at the Olympics.

A study led by UCL (University College London) scientists hasunravelled the physical mechanism behind the poorly understood weatherphenomenon of coastal wind jets - which are thought to have helped theBritish sailing team strike gold at the Olympics.

Reporting in the journal Weather they explain the physics behindcoastal wind jets, which are rivers of fast flowing air that form closeto coasts. The jets are well-known to successful yacht-racingstrategists and may have been used to advantage in races. But, untilnow no one properly understood how these jets form.

Working with colleagues from the University of Reading, PotsdamInstitute for Climate Impact Research, Germany, and the Laboratoire DesEcoulements Geophysiques et Industriels, France, they say that bypredicting when they will form, could give the upper hand in planning arace strategy.

The researchers suggest that their findings may also have significantimplications for the positioning of wind turbine 'farms', which arebeing installed in coastal waters.

Dr Andrew Orr, of the UCL Department of Space and Climate Physics and the NERC Centre for Polar Observation and Modelling, says:

"The jets can gust up to 40 per cent higher than normal wind speeds,but are sometimes only a few kilometres wide, and consequently areoften under-predicted by operational weather forecast models. Improvedunderstanding of them may enable us to optimise wind energy along ourcoasts. We also hope this will lead to better prediction of flooding inhigh winds as they can force strong, localised storm surge in theocean."

Wind develops because of differences in atmospheric pressure.Above the Earth's surface they always blow clockwise around areas ofhigh pressure and anti-clockwise around low pressure regions. This isthe result of the rotation of the Earth, which leads to a force knownas the 'Coriolis force'. However, the direction of the wind changes inrelation to the roughness of the surface it passes over. Overland dragis caused by trees, cliffs and buildings, which reduces wind speed. Inthe northern hemisphere the surface wind is deflected to the left ofits path above the surface and in the southern hemisphere it isdeflected to the right.

Professor Lord Julian Hunt, of the UCL Department of Space andClimate Physics and the NERC Centre for Polar Observation andModelling, explains:

"Coastal meteorology is complex and of great practicalimportance. However, the formation of low-level jets and the associatedvariation of cloudiness are not well understood. When consideringcoastal meteorology we have shown that it is essential to consider theCoriolis force.

"As onshore winds cross the coastline they are slowed by the increaseddrag and elevation of the land. The Coriolis force turns the wind tothe left and depending on whether the coastline is to the right orleft, the winds either converge or diverge. This causes variations incloudiness and precipitation. To maintain a balanced flow, the Coriolisforce must induce a wind jet parallel to the coastline."

The team managed to reproduce the jets in a laboratory experiment andby running a very high-resolution numerical weather model centred overthe Dover Straits region of the English Channel. Although jets causedby differing land and sea temperature have been previously documented,the team demonstrated for the first time that this is not alwaysrequired, suggesting that they are likely to be more widespread aroundour coasts than was previously thought.

Dr Orr added: "The next step is to develop weather models forpersonal computers which can forecast these jets, and thus provide moreaccurate local forecasting of coastal winds. As well as helping ourOlympic sailors to continue winning gold medals, this will be avaluable resource for forecasting of wind energy and flood prevention."

###

The study was funded by the Natural Environment Research Council.



Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Cite This Page:

University College London. "Scientists Unravel How The Brits May Have Struck Gold In Olympic Sailing." ScienceDaily. ScienceDaily, 10 October 2005. <www.sciencedaily.com/releases/2005/10/051010100153.htm>.
University College London. (2005, October 10). Scientists Unravel How The Brits May Have Struck Gold In Olympic Sailing. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2005/10/051010100153.htm
University College London. "Scientists Unravel How The Brits May Have Struck Gold In Olympic Sailing." ScienceDaily. www.sciencedaily.com/releases/2005/10/051010100153.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins