Featured Research

from universities, journals, and other organizations

Take Two! Researchers Discover How Protein Kinases In Plants Regulate Adaptation To Changing Light Conditions

Date:
October 24, 2005
Source:
Max Planck Society
Summary:
All life on earth depends on photosynthesis, a process in which light energy is used to build organic substances. When the amount and proportion of light changes, a plant has to adapt; we distinguish between three different kinds of adaptation.

The protein kinase STN8 is located in the chloroplasts of the leaf. Confocal laser microscopy makes the red marker protein visible (left). In green, the autofluorescence of the chloroplasts (middle). The pictures are superimposed (right).
Credit: Image : Max Planck Institute for Plant Breeding Research

The plant makes changes to its photosynthetic machinery and important "protein gears". In the journal Nature (October 20, 2005), Max Planck researchers have explained how two protein kinases -- that is, enzymes which transfer phosphate groups to other proteins -- regulate how different kinds of photosynthetic machinery do this adapting and make it possible for the plant to adjust itself better under various lighting conditions.

Related Articles


Photosynthesis is a very complex process, and without it life on earth would be extremely difficult, or possible only for exotic micro-organisms. Life requires two molecules: carbon dioxide and water. The environment contains large amounts of both. A plant sends both of these components through its photosynthesis machinery, where they are combined, and sugar molecules are synthesised. This sweet supplier of energy provides nourishment for the plant and thus, indirectly, all forms of life.

There are three methods by which photosynthesis adapts when light conditions change. The first is short-term adaptation, in which antennas, collecting light, are altered within minutes. The second is long-term adaptation, in which within days the composition and the relationships of the photosystems to each other change. And the third is the phosphorylation of certain proteins of photosystem II, which until now scientists assumed was necessary for the replacement of defective photosynthetic proteins.

A small molecular helper, the protein kinase STN7, is responsible for the first and second form of adaptation. A related kinase, STN8, is responsible for the third. Although the function of STN7 in the first type of adaptation has already been known, the research team from Cologne and Munich, with support from Jena and Dusseldorf, were able to show that STN7 is also necessary for the second form of adaptation. They were also able to clarify the role of the enzyme STN8 for the third kind of adaptation. The team, led by Dario Leister of the Max Planck Institute for Plant Breeding Research, has thus reached a milestone in the research of the adaptation of the photosynthesis mechanism in altered light conditions.

STN8 fundamentally modifies photosystem II, in which it phosphorylates proteins. For a long time, this phosphorylation was considered important for the replacement of defective proteins in the photosystem II. The researchers were able to show, however, that the phosphorylation of proteins of photosystem II is not crucial to their replacement. This has led to a new question: why, then, is this phosphorylation necessary? The researchers hope, in the future, to pursue this line of enquiry, and how the STN7 kinase coordinates the short and long-term adaptation of photosynthesis. In their report, the researchers were able to present the first indications of an answer: phosphorylation of certain photosynthetic proteins seems to be important for the regulation of special genes in chloroplasts and cell nuclei.


Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "Take Two! Researchers Discover How Protein Kinases In Plants Regulate Adaptation To Changing Light Conditions." ScienceDaily. ScienceDaily, 24 October 2005. <www.sciencedaily.com/releases/2005/10/051024083412.htm>.
Max Planck Society. (2005, October 24). Take Two! Researchers Discover How Protein Kinases In Plants Regulate Adaptation To Changing Light Conditions. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2005/10/051024083412.htm
Max Planck Society. "Take Two! Researchers Discover How Protein Kinases In Plants Regulate Adaptation To Changing Light Conditions." ScienceDaily. www.sciencedaily.com/releases/2005/10/051024083412.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins