Featured Research

from universities, journals, and other organizations

Plant Genes Identified That Can Form Basis For Crops Better Adapted To Environmental Conditions

Date:
October 28, 2005
Source:
VIB, Flanders Interuniversity Institute of Biotechnology
Summary:
Roots are crucial for the development of strong, healthy crops. But until recently, exactly which genes are involved in the development of roots was still a mystery. VIB scientists have now analyzed a complete plant genome in order to identify the genes that are essential for the formation of capillary roots. For the first time, they are unraveling the genetic basis for the branching of the root system.

Ghent, Belgium − Roots are crucial for the development of strong, healthy crops. But until recently, exactly which genes are involved in the development of roots was still a mystery. Scientists from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to Ghent University have now analyzed a complete plant genome in order to identify the genes that are essential for the formation of capillary roots. For the first time, they are unraveling the genetic basis for the branching of the root system − the key to a plant's further growth and development.

The mystery of capillary root formation

Root systems absorb nutrients and anchor plants in the soil − two crucial functions for a plant's growth and further development. The formation of capillary roots is vital to the root system and determines how much water and minerals a plant can absorb. As early as 1937, scientists knew that it takes only 4 months for a single rye plant to produce some 13 million individual roots! But up to now, the genetic basis of this complex process has remained unexplained.

The production of new roots is a complex combination of cell division, growth and differentiation. A specialized layer of cells in the root − the pericycle cells − must be activated to start dividing again. Therefore, it is also crucial that the cell cycle − the process that directs cell division − be under optimal control. Although the precise factors that underlie these processes and how they work together are virtually unknown, it has been quite clear that an enormous number of factors are involved.

Tom Beeckman and his team in the VIB Department of Plant Systems Biology took on the challenge of identifying all the genes that are involved in the process of capillary root formation. They used a simple model plant for this study: the Mouse-ear Cress or Arabidopsis thaliana.

Large-scale research identifies genes involved in capillary root formation

First of all, the researchers developed a special method − the Lateral Root-Inducible System (LRIS) − with which they are able to have capillary roots grow in a controlled manner. They studied all the genes that are connected with the formation of capillary roots and compared them with the complete genome of a plant that is unable to form capillary roots. By analyzing these large data sets in detail, the Ghent team discovered which genes are crucial for the formation of new capillary roots. For this part of the project, they used micro-array technology, with which thousands of samples can be studied simultaneously.

The development of capillary roots is important for sustainable agriculture

Capillary root formation is controlled by both internal and external signals. This ensures that the root system adapts itself to changes in the soil − a very heterogeneous and changeable environment. From the agricultural point of view, the branching of the root is essential because roots are responsible for helping plants adapt to adverse environmental conditions. A better understanding of capillary root formation will enable the cultivation of crops that absorb water and minerals more efficiently. An important step toward a more environment-friendly, sustainable agriculture in a world whose population is growing while the land available for agriculture is diminishing.

Tom Beeckman is in charge of the root development group in the VIB Department of Plant Systems Biology, which is under the direction of Dirk Inzι (for more info, see: www.vib.be/Research/EN/Research+Departments/Department+of+Plant+Systems+Biology/Tom+Beeckman)


Story Source:

The above story is based on materials provided by VIB, Flanders Interuniversity Institute of Biotechnology. Note: Materials may be edited for content and length.


Cite This Page:

VIB, Flanders Interuniversity Institute of Biotechnology. "Plant Genes Identified That Can Form Basis For Crops Better Adapted To Environmental Conditions." ScienceDaily. ScienceDaily, 28 October 2005. <www.sciencedaily.com/releases/2005/10/051028144140.htm>.
VIB, Flanders Interuniversity Institute of Biotechnology. (2005, October 28). Plant Genes Identified That Can Form Basis For Crops Better Adapted To Environmental Conditions. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2005/10/051028144140.htm
VIB, Flanders Interuniversity Institute of Biotechnology. "Plant Genes Identified That Can Form Basis For Crops Better Adapted To Environmental Conditions." ScienceDaily. www.sciencedaily.com/releases/2005/10/051028144140.htm (accessed September 16, 2014).

Share This



More Plants & Animals News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) — The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) — Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) — Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins