Featured Research

from universities, journals, and other organizations

Einstein's Relativity Theory Proven With The 'Lead' Of A Pencil

Date:
November 10, 2005
Source:
University of Manchester
Summary:
Scientists at The University of Manchester have discovered a new way to test Einstein's theory of relativity using the 'lead' of a pencil. Until now it was only possible to test the theory by building expensive machinery or by studying stars in distant galaxies, but a team of British, Russian and Dutch scientists has now proven it can be done in the lab using an ultra-thin material called Graphene.

Scientists at The University of Manchester have discovered a new way to test Einstein's theory of relativity using the 'lead' of a pencil.

Until now it was only possible to test the theory by building expensive machinery or by studying stars in distant galaxies, but a team of British, Russian and Dutch scientists has now proven it can be done in the lab using an ultra-thin material called Graphene.

The group, led by Professor Andre Geim of the School of Physics and Astronomy, discovered the one atom thick material last year. Graphene is created by extracting one atom thick slivers of graphite via a process similar to that of tracing with a pencil.

Professor Geim, said: "To understand implications of the relativity theory, researchers often have to go considerable lengths, but our work shows that it is possible to set up direct experiments to test relativistic ideas. In theory, this will speed up possible discoveries and probably save billions of pounds now that tests can be set up using Graphene and relatively inexpensive laboratory equipment."

In a paper published in Nature (November 10, 2005), the team describes how electric charges in Graphene appear to behave like relativistic particles with no mass (zero rest mass). The new particles are called massless Dirac fermions and are described by Einstein's relativity theory (so-called the Dirac equation).

The team also reports several new relativistic effects. They have shown that massless Dirac fermions are pulled by magnetic fields in such a manner that they gain a dynamic (motion) mass described by the famous Einstein's equation E=mc2. This is similar to the case of photons (particles of light) that also have no mass but can still feel the gravitational pull of the Sun due their dynamic mass described by the same equation.

Dr Kostya Novoselov, a key investigator in this research, added: "The integer and fractional quantum Hall effects are two of the most remarkable discoveries of the late 20th century. It is not easy to explain their significance but both discoveries led to Nobel prizes. One can probably appreciate the importance of our present work in terms of fundamental physics, if I mention that one of the phenomena we report is a new, relativistic type of the quantum Hall effect."


Story Source:

The above story is based on materials provided by University of Manchester. Note: Materials may be edited for content and length.


Cite This Page:

University of Manchester. "Einstein's Relativity Theory Proven With The 'Lead' Of A Pencil." ScienceDaily. ScienceDaily, 10 November 2005. <www.sciencedaily.com/releases/2005/11/051110090022.htm>.
University of Manchester. (2005, November 10). Einstein's Relativity Theory Proven With The 'Lead' Of A Pencil. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2005/11/051110090022.htm
University of Manchester. "Einstein's Relativity Theory Proven With The 'Lead' Of A Pencil." ScienceDaily. www.sciencedaily.com/releases/2005/11/051110090022.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins