Featured Research

from universities, journals, and other organizations

Shimmering Colors Which Change With Temperature

Date:
December 2, 2005
Source:
Max-Planck-Gesellschaft
Summary:
Scientists at the Max Planck Institute of Colloids and Interfaces have used ion bombardment and gold metallisation to produce a new family of particles whose bonding behaviour can be chemically tailored. With these particles, scientists hope not only to be able to perform better research on the dynamics of solids and molecules. The discovery could also bring about, among other things, the development of new finishes which change their colour with temperature. (Angewandte Chemie, December 2, 47/2005.)

Scheme of the production of defined layered microparticle arrays. Left: a side view of a colloidal crystal being bombarded with reactive ions. Middle: a side view of a colloidal crystal whose size is being reduced by ion bombardment. The crystal is metallised by gold. Right: a colloid crystal with small colloids (pink) in its uppermost layer, a middle layer (blue) and a third layer (black), which contains gold deposits (orange) as triangular-shaped surfaces.
Credit: Image : Max Planck Institute of Colloid and Interfaces

Scientists at the Max Planck Institute of Colloids and Interfaces have used ion bombardment and gold metallisation to produce a new family of particles whose bonding behaviour can be chemically tailored. With these particles, scientists hope not only to be able to perform better research on the dynamics of solids and molecules. The discovery could also bring about, among other things, the development of new finishes which change their colour with temperature. (Angewandte Chemie, December 2, 47/2005.)

Related Articles


Nail polish and expensive cars can nowadays shimmer in many colours, thanks to progress in the field of colloid chemistry, the chemistry of small particles. The bright colours in modern finishes are created because the light is reflected at layers of regularly arranged colloid particles. Individual colours are either removed or strengthened; the thickness of the layers -- what is known as the "lattice constant" -- determines the colour. Because we can nowadays tailor the spherical shape and the surface of the particles, we can produce optimised crystals with the desired lattice constant in the range of visible light.

Colloids can indeed do much more: they are also interesting model systems for solid-state physics, because the bonding behaviour of the relatively large particle can be compared with that of much smaller atoms. Since they react more slowly than atoms, we can use them to observe and study processes in solid-state physics. But there is a problem: most atoms, unlike most other particles, are not by rule spherically symmetric, but rather have deformed "orbitals" which project into space like dumbbells or ovals.

The team of researchers from the Max Planck Institute of Colloids and Interfaces, led by Dr Wang, has now produced particles that do not interact with their neighbours in spherically symmetric ways. So they placed a colloidal crystal on a surface (image 2) and bombarded it with reactive ions, reducing the particles in the upper layer to the desired size and expanding the free surfaces between the colloids.

They also metallised the crystal with gold. Part of the gold passed through the gaps in the upper layer as if through a stencil, all the way to the lower layers. In this way, patterns of metallisation of various symmetries and at nanoscale sizes are produced (see image 1). Gold surprisingly also lodged itself in the deep layers on the underside of the particles. (image 1, right)

For years, chemistry has had a number of methods to intentionally use gold in reactions, for example, in joining particular molecules. Thus the particles partially overlaid with gold expand the tool kit of "colloid atoms". The chemists hope that in the future they will be able to build "colloid molecules" or new kinds of colloid crystals. For the chemistry of colours, too, there are more possibilities: new, shimmering colours, that, for example, change with the surrounding temperature or humidity. In the long-term, however, the most attractive applications appear to be in optical data processing.



Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Max-Planck-Gesellschaft. "Shimmering Colors Which Change With Temperature." ScienceDaily. ScienceDaily, 2 December 2005. <www.sciencedaily.com/releases/2005/12/051202084139.htm>.
Max-Planck-Gesellschaft. (2005, December 2). Shimmering Colors Which Change With Temperature. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2005/12/051202084139.htm
Max-Planck-Gesellschaft. "Shimmering Colors Which Change With Temperature." ScienceDaily. www.sciencedaily.com/releases/2005/12/051202084139.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins