Featured Research

from universities, journals, and other organizations

Shimmering Colors Which Change With Temperature

Date:
December 2, 2005
Source:
Max-Planck-Gesellschaft
Summary:
Scientists at the Max Planck Institute of Colloids and Interfaces have used ion bombardment and gold metallisation to produce a new family of particles whose bonding behaviour can be chemically tailored. With these particles, scientists hope not only to be able to perform better research on the dynamics of solids and molecules. The discovery could also bring about, among other things, the development of new finishes which change their colour with temperature. (Angewandte Chemie, December 2, 47/2005.)

Scheme of the production of defined layered microparticle arrays. Left: a side view of a colloidal crystal being bombarded with reactive ions. Middle: a side view of a colloidal crystal whose size is being reduced by ion bombardment. The crystal is metallised by gold. Right: a colloid crystal with small colloids (pink) in its uppermost layer, a middle layer (blue) and a third layer (black), which contains gold deposits (orange) as triangular-shaped surfaces.
Credit: Image : Max Planck Institute of Colloid and Interfaces

Scientists at the Max Planck Institute of Colloids and Interfaces have used ion bombardment and gold metallisation to produce a new family of particles whose bonding behaviour can be chemically tailored. With these particles, scientists hope not only to be able to perform better research on the dynamics of solids and molecules. The discovery could also bring about, among other things, the development of new finishes which change their colour with temperature. (Angewandte Chemie, December 2, 47/2005.)

Nail polish and expensive cars can nowadays shimmer in many colours, thanks to progress in the field of colloid chemistry, the chemistry of small particles. The bright colours in modern finishes are created because the light is reflected at layers of regularly arranged colloid particles. Individual colours are either removed or strengthened; the thickness of the layers -- what is known as the "lattice constant" -- determines the colour. Because we can nowadays tailor the spherical shape and the surface of the particles, we can produce optimised crystals with the desired lattice constant in the range of visible light.

Colloids can indeed do much more: they are also interesting model systems for solid-state physics, because the bonding behaviour of the relatively large particle can be compared with that of much smaller atoms. Since they react more slowly than atoms, we can use them to observe and study processes in solid-state physics. But there is a problem: most atoms, unlike most other particles, are not by rule spherically symmetric, but rather have deformed "orbitals" which project into space like dumbbells or ovals.

The team of researchers from the Max Planck Institute of Colloids and Interfaces, led by Dr Wang, has now produced particles that do not interact with their neighbours in spherically symmetric ways. So they placed a colloidal crystal on a surface (image 2) and bombarded it with reactive ions, reducing the particles in the upper layer to the desired size and expanding the free surfaces between the colloids.

They also metallised the crystal with gold. Part of the gold passed through the gaps in the upper layer as if through a stencil, all the way to the lower layers. In this way, patterns of metallisation of various symmetries and at nanoscale sizes are produced (see image 1). Gold surprisingly also lodged itself in the deep layers on the underside of the particles. (image 1, right)

For years, chemistry has had a number of methods to intentionally use gold in reactions, for example, in joining particular molecules. Thus the particles partially overlaid with gold expand the tool kit of "colloid atoms". The chemists hope that in the future they will be able to build "colloid molecules" or new kinds of colloid crystals. For the chemistry of colours, too, there are more possibilities: new, shimmering colours, that, for example, change with the surrounding temperature or humidity. In the long-term, however, the most attractive applications appear to be in optical data processing.



Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Max-Planck-Gesellschaft. "Shimmering Colors Which Change With Temperature." ScienceDaily. ScienceDaily, 2 December 2005. <www.sciencedaily.com/releases/2005/12/051202084139.htm>.
Max-Planck-Gesellschaft. (2005, December 2). Shimmering Colors Which Change With Temperature. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2005/12/051202084139.htm
Max-Planck-Gesellschaft. "Shimmering Colors Which Change With Temperature." ScienceDaily. www.sciencedaily.com/releases/2005/12/051202084139.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins