Featured Research

from universities, journals, and other organizations

Advance In Cholera Bacteria Points To New Treatment And Vaccine

Date:
December 8, 2005
Source:
Dartmouth Medical School
Summary:
Opening a new door to an effective vaccine and therapy for a disease that strikes thousands annually, researchers at Dartmouth Medical School discovered that the bacteria that causes the intestinal disease cholera spreads in the environment in much the same way it infects humans.

Researchers Brooke Jude and Dr. Ronald Taylor.
Credit: Image courtesy of Dartmouth Medical School

Opening a new door to an effective vaccine and therapy for a disease that strikes thousands annually, researchers at Dartmouth Medical School discovered that the bacteria that causes the intestinal disease Cholera spreads in the environment in much the same way it infects humans. Appearing in the December 8 issue of the journal Nature, the study investigates the bacterium Vibrio cholerae and its ability to attach to a host, enabling it to multiply and adding to the risk of infecting humans.

"We've discovered, through genetics, a factor that is important in the normal biology of the organism out in the environment and it is also one of the very initial factors for cholera colonization in the intestine," said Dr. Ronald Taylor, professor of microbiology and immunology at DMS who led the research. "Now that we know what the bacterium attaches to in the intestine, we can find ways to block that initial contact."

Cholera and the bacterium that causes it is found in contaminated drinking water and food, often in underdeveloped countries and refugee camps. Once the disease takes hold, it causes diarrhea, vomiting, severe dehydration and can result in death if treatment is not promptly given. In 2001 alone, 28 countries reported over 40 outbreaks of cholera to the World Health Organization, resulting in the deaths of thousands.

Large outbreaks are often traced back to contaminated water supplies that are commonly associated with algal or zooplankton blooms. For the V. cholerae bacterium to infect someone with cholera, the bacterium often binds to plankton in the aquatic environment before it arrives at the human intestine via contaminated food and water sources. V. cholerae attaches to the outer surface of plankton, made up of a carbonate substance called chitin. Once attached to the plankton's chitin, the bacterium thrives on the carbon and multiplies. Humans do not have chitin in the surface of intestinal cells, where the bacterium takes hold, and researchers have been searching for another substance that could be responsible for playing a role in attachment.

In the study, Taylor and colleagues screened cultured intestinal cells and found mutant bacteria that had trouble binding to the intestinal cells. One mutant strain of V. cholerae lacks a gene that enables it to properly bind with a sugar called GlcNAc. When they compared it with normal, wild-type V. cholerae bacteria, the researchers found that the protein encoded by this gene provided normal bacteria the ability to attach to the GlcNAc on cells. The team verified that the GlcNAc in the intestine initiates the attachment and colonization of the bacteria by testing the mutant strain on zooplankton and cultured intestinal cells in vitro as well as in an in vivo cholera model.

"We set out to find factors that would reduce the bacteria's ability to bind to the epithelial lining of the intestine," said Taylor. "What's interesting is that we've identified a factor that works both in the environment and in the human body. This type of link hasn't been discussed before and it has a strong potential for vaccine and therapeutic development."

These findings could lead to a new form of therapy to treat people with cholera. "Now that we know that the bacteria are binding this particular sugar, we could essentially trick the infecting bacteria to bind to the sugar included in a derivative of oral rehydration therapy solution instead of the intestine," said study co-author Brooke Jude, a fourth-year PhD student at Dartmouth Medical School.

A vaccine for cholera already exists, but only works 50% of the time and people who take it are only immune for 12 months, according to Taylor. Taylor believes that a more effective vaccine could be developed by inducing the production of antibodies directed against the protein his research team has discovered, thereby blocking its function. This would inhibit an early step in the intestinal colonization process, and the bacteria would pass harmlessly through the body. The authors acknowledge that in addition to GlcNAc, there may be other points of attachment that could still be responsible for allowing the bacteria to bind to the intestine, and they are currently focusing their research to identify any other areas of attachment..

"There may be more of these factors and as we find them and knock them out, we'll decrease the ability for cholera bacteria to colonize even further," said Taylor.

###

This study, "A colonization factor links Vibrio cholerae environmental survival and human infection," was funded by the NIH and a Rosalind Borison memorial fellowship.


Story Source:

The above story is based on materials provided by Dartmouth Medical School. Note: Materials may be edited for content and length.


Cite This Page:

Dartmouth Medical School. "Advance In Cholera Bacteria Points To New Treatment And Vaccine." ScienceDaily. ScienceDaily, 8 December 2005. <www.sciencedaily.com/releases/2005/12/051207175638.htm>.
Dartmouth Medical School. (2005, December 8). Advance In Cholera Bacteria Points To New Treatment And Vaccine. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2005/12/051207175638.htm
Dartmouth Medical School. "Advance In Cholera Bacteria Points To New Treatment And Vaccine." ScienceDaily. www.sciencedaily.com/releases/2005/12/051207175638.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins