Featured Research

from universities, journals, and other organizations

Rerouting Of Major Rivers In Asia Provide Clues To Mountains Of The Past

Date:
December 26, 2005
Source:
Woods Hole Oceanographic Institution
Summary:
Scientists have long recognized that the collision of the earth's great crustal plates generates mountain ranges and other features of the Earth's surface. Yet the link between mountain uplift and river drainage patterns has been uncertain. Now scientists have used laboratory techniques and sediment cores from the ocean to help explain the how rivers have changed course over millions of years

Shaded relief map of the Arabian Sea and surrounding land masses, showing the location of the drill sites and seismic profiles used in the study and major tributaries of the Indus River. (Figure by Peter Clift and Jerzy Blusztajn)

Scientists have long recognized that the collision of the earth’s great crustal plates generates mountain ranges and other features of the Earth’s surface. Yet the link between mountain uplift and river drainage patterns has been uncertain. Now scientists have used laboratory techniques and sediment cores from the ocean to help explain the how rivers have changed course over millions of years.

In a report published in the December 15 issue of Nature, scientists Peter Clift of the University of Aberdeen in the United Kingdom and Jerzy Blusztajn of the Woods Hole Oceanographic Institution reconstructed the erosional discharge from the Indus River over the past 30 million years and found that the source of those sediments changed five million years ago. Until then, Indus River sediments were produced by erosion of mountains to the north of the collision zone between India and Asia, but five million years ago much more sediment starting coming from the southern Himalayas, part of the deformed Indian plate.

Clift and Blusztajn believe the change is caused by a rerouting of the major rivers of the Punjab region into the Indus River, where they flow into the Arabian Sea west of India. Previously these rivers flowed east and joined the Ganges River before reaching the Bay of Bengal, east of India.

The erosional record in the Arabian Sea is at the center of debates concerning the nature of continent-ocean interactions, and how climate, tectonic activity and erosion are linked. In order to interpret this record, scientists need to understand what sediment is being delivered by the modern Indus River to the coast and transported to the deep sea.

The researchers reconstructed the long-term discharge from the Indus River using both new and previously published data to estimate continental erosion rates. Although some sediment from the rivers stays onshore, about two thirds of the sediment is preserved offshore. Using a series of sediment samples from scientific and industrial drill sites across the Arabian Sea, the researchers reconstructed changing continental erosion rates through time. The technique may enable scientists to eventually date the uplift of the Tibetan Plateau

By studying sediments accumulated in the Arabian Sea, the researchers found strong evidence for a significant change in the Himalayan river systems in the recent geologic past. The sediment in the Arabian Sea forms one of the largest areas of sediment deposition in the oceans and is an important repository of information on the uplift and erosion of the western Himalaya.

“This is the first time such a major sediment capture event has been dated,” said Blusztajn, a researcher in the WHOI Geology and Geophysics Department. “ It has been proposed than such huge events occurred in East Asia, but so far the ages of the capture events there remain unknown. The new isotope stratigraphy provides strong evidence for a major change in the geometry of the western Himalayan river system after five million years ago, probably caused by a change in the mountains.”

Earlier studies by Clift, a visiting scientist at WHOI, and others have shown differences in “isotopic fingerprints” between ancient and modern Indus River sediments.

The new findings suggest the ancient Punjabi rivers were connected to the Ganges and not the Indus River, and that the rivers were diverted or rerouted from their original southeasterly flow by the uplift of mountain ranges in modern day Pakistan. The majority of material contributing to the Indus River now is coming from four large rivers in the Punjab: the Sutlej, Ravi, Chennab and Jellum rivers, forming the “bread basket” of northern India and Pakistan.

“This study highlights the need to account for sediment capture events like this in interpreting erosion records from the marine environment,” Blusztajn said. “Studying modern river sediments and comparing them with marine sediment allows the volume and composition of inputs from different sources to be quantified. If the marine sedimentation process can be related to the modern mountains and drainage system, we may be able to use ancient sediments to reconstruct what the mountains looked like in the geologic past.”


Story Source:

The above story is based on materials provided by Woods Hole Oceanographic Institution. Note: Materials may be edited for content and length.


Cite This Page:

Woods Hole Oceanographic Institution. "Rerouting Of Major Rivers In Asia Provide Clues To Mountains Of The Past." ScienceDaily. ScienceDaily, 26 December 2005. <www.sciencedaily.com/releases/2005/12/051223120400.htm>.
Woods Hole Oceanographic Institution. (2005, December 26). Rerouting Of Major Rivers In Asia Provide Clues To Mountains Of The Past. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2005/12/051223120400.htm
Woods Hole Oceanographic Institution. "Rerouting Of Major Rivers In Asia Provide Clues To Mountains Of The Past." ScienceDaily. www.sciencedaily.com/releases/2005/12/051223120400.htm (accessed April 25, 2014).

Share This



More Earth & Climate News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
New Pictures of Ship That Sank in 1888

New Pictures of Ship That Sank in 1888

AP (Apr. 24, 2014) Federal researchers have released new images of the City of Chester, a steamship that sank in San Francisco Bay in 1888. Researchers recently found the shipwreck while mapping shipping routes. (April 24) Video provided by AP
Powered by NewsLook.com
Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Reuters - US Online Video (Apr. 23, 2014) A group of space explorers say the chance of a city-obliterating asteroid striking Earth is higher than scientists previously believed. Deborah Gembara reports. Video provided by Reuters
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins