Featured Research

from universities, journals, and other organizations

Nature Suggests A Promising Strategy For Artificial Bone

Date:
February 1, 2006
Source:
NIH/National Institute Of Dental And Craniofacial Research
Summary:
Researchers supported by the National Institute of Dental and Craniofacial Research (NIDCR), part of the National Institutes of Health, report they have harnessed the unique physics of sea water as it freezes to guide the production of what could be a new generation of more biocompatible materials for artificial bone.

Researchers supported by the National Institute of Dental and Craniofacial Research (NIDCR), part of the National Institutes of Health, report they have harnessed the unique physics of sea water as it freezes to guide the production of what could be a new generation of more biocompatible materials for artificial bone.

Related Articles


As published in the January 27 issue of the journal Science, the researchers used this novel technique to produce a thinly layered composite, or hybrid, structure that more closely mimics the natural scaffolding of bone. The scientists said their initial, proof-of-principle scaffolds are desirably ultra lightweight and up to four times stronger than current porous ceramic implant materials.

According to Dr. Antoni Tomsia, a scientist at Lawrence Berkeley National Laboratory in Berkeley, Calif. and senior author on the paper, the still nameless freezing technique, with further technical refinements, could churn out even stronger materials and could be scaled up to fabricate larger structures, such as replacement hips and knees and a variety of dental materials.

He also noted that it easily could be adapted to make layered composites for variety of industrial purposes, ranging from airplane manufacturing to computer hardware. €œFreezing is the engine that drives the production process,€ said Tomsia. €œBut the engine is undiscriminating in the composites or polymers that it fabricates.€

The freezing technique reported this week builds on two longstanding research challenges in orthopedics and the related field of tissue engineering. The first is the need for better, more biocompatible materials to serve as artificial bone. Most current materials, such as metal, were originally developed for non-medical purposes and thus poorly match the natural architecture of bone and other tissues, sometimes triggering inflammation and chronic soreness in the joint.

The second challenge is to figure out how to make porous scaffolds for bone regeneration with enough strength for load bearing applications. Tomsia said strong, porous structures would allow cells to infiltrate into the implant, adhere to it, and more fully integrate with the synthetic material.

And therein lies a rub. €œHow do you make porous scaffolds strong?€ asked Tomsia. €œIt€™s a contradiction in terms. It€™s like asking, how do you make Swiss cheese strong? But nature certainly does it all of the time.€

Nature does it in large part by building bone at the nanoscale, the one-billionth of a micron world that scientists have begun to pursue in the emerging field of nanotechnology. €œOur bones are made of organic and inorganic materials that individually aren€™t very strong,€ said Dr. Sylvain Deville, a member of Tomsia laboratory and lead author on the paper. €œBut when nature weaves them together at the nanoscale, the scaffold structure of bone is quite strong and durable. The question is how can people learn to make composite materials on the same micro scale as nature?€

Deville said he and his colleagues arrived at a possible solution a few years ago while reading up on the physics of sea water. As an ice crystal forms in sea water, it pumps the salt, pollutants, and other impurities out of the crystal and into the narrow channels of the forming ice layer. The impurities gather in the channels and remain trapped between the horizontal layers of ice.

The scientists discovered in the laboratory that the forming ice crystals would pump out virtually any extraneous material, including various ceramics, the building blocks of many composite structures. According to Dr. Eduardo Saiz, an author on the paper and a member of the Tomsia laboratory, if they sublimated the ice and removed the water, €œwe found what remains are plates of hydroxyapatite,€ a ceramic biomaterial commonly used to make artificial bone.

€œWe found the faster we froze the water, the thinner the plates, or wafer-like layers, would be,€ said Tomsia, whose laboratory redesigned a freeze casting machine to better control and accelerate the freezing process. A freeze casting machine enables a ceramic structure to be fabricated into complex shapes. €œIt took us about one year to go from layers of 100 microns down to about a micron,€ Tomsia added. €œThat is almost down to the level that nature makes its composites.€

Although the laboratory€™s proof-of-principle composite was small and cube shaped, Tomsia said he and his colleagues are now working to refine the freezing process and build larger structures, hopefully one day advancing to the design of a hip implant. The scientists stressed, however, that it would be impossible to put a time frame on when they might reach this point. €œNature has so much to teach us about making strong materials,€ said Tomsia. €œEvolution occurred over millions of years, and nature does not make mistakes.€

The article is titled, €œFreezing as a Path to Build Complex Composites.€ It is published in the January 27, 2006 issue of Science. The authors are Sylvain Deville, Eduardo Saiz, Ravi K. Nalla, and Antoni P. Tomsia.

###

The National Institute ofDental and Craniofacial Research is the nation's leading funder of research on oral, dental, and craniofacial health.


Story Source:

The above story is based on materials provided by NIH/National Institute Of Dental And Craniofacial Research. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute Of Dental And Craniofacial Research. "Nature Suggests A Promising Strategy For Artificial Bone." ScienceDaily. ScienceDaily, 1 February 2006. <www.sciencedaily.com/releases/2006/02/060201232225.htm>.
NIH/National Institute Of Dental And Craniofacial Research. (2006, February 1). Nature Suggests A Promising Strategy For Artificial Bone. ScienceDaily. Retrieved November 20, 2014 from www.sciencedaily.com/releases/2006/02/060201232225.htm
NIH/National Institute Of Dental And Craniofacial Research. "Nature Suggests A Promising Strategy For Artificial Bone." ScienceDaily. www.sciencedaily.com/releases/2006/02/060201232225.htm (accessed November 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
Latest Minivan Crash Tests Aren't Pretty

Latest Minivan Crash Tests Aren't Pretty

Newsy (Nov. 20, 2014) Five minivans were put to the test in head-on crash simulations by the Insurance Institute for Highway Safety. Video provided by Newsy
Powered by NewsLook.com
Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Reuters - US Online Video (Nov. 20, 2014) U.S. Congress hears from a victim and company officials as it holds a hearing on the safety of Takata airbags after reports of injuries. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
DARPA Creates The Tech You Can Only Dream Of

DARPA Creates The Tech You Can Only Dream Of

Newsy (Nov. 20, 2014) Curious what a rocket-dodging car would look like? How about a robotic pack mule? Or maybe a wearable robot? These are a few of DARPA's projects. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins