Featured Research

from universities, journals, and other organizations

High-tech Sieve Sifts For Hydrogen

Date:
February 3, 2006
Source:
National Science Foundation
Summary:
Whether it's used in chemical laboratories or the fuel tanks of advanced automobiles, hydrogen is mostly produced from natural gas and other fossil fuels. However, to isolate the tiny hydrogen molecules, engineers must first remove impurities, and the currently available methods can require substantial equipment or toxic chemicals.

Benny Freeman of The University of Texas at Austin holds a sample of the transparent membrane material developed in his laboratory.
Credit: Jennie Trower, The University of Texas at Austin

Whether it's used in chemical laboratories or the fuel tanks of advanced automobiles, hydrogen is mostly produced from natural gas and other fossil fuels. However, to isolate the tiny hydrogen molecules, engineers must first remove impurities, and the currently available methods can require substantial equipment or toxic chemicals.

Now, in the Feb. 3 issue of the journal Science, engineers have announced the development of a simpler, safer material that can potentially assist, and in some places replace, existing processing methods. The rubbery, plastic film, similar to membranes already in use in biomedical devices, has applications for isolating not only hydrogen, but also natural gas itself.

"Our team originally set out to design membranes to purify hydrogen produced from coal," said co-author and National Science Foundation awardee Benny Freeman of The University of Texas. "We felt that a good improvement would be to design membranes more permeable to impurities than to hydrogen," he added. Until now, existing membranes had the opposite property--they were more permeable to hydrogen than to impurities.

Freeman collaborated in this research with colleagues at both The University of Texas at Austin and the Research Triangle Institute in Research Triangle Park, N.C.

Hydrogen is commonly generated from natural gas in a process called steam reforming, wherein treatments with hot steam convert methane into a gaseous mixture consisting of mainly carbon dioxide (CO2), carbon monoxide (CO) and hydrogen.

In a phenomenon that at first seems counterintuitive, larger gas molecules like CO2, and polar molecules, pass through the new film, while the much smaller hydrogen molecules stay behind.

The membrane works because the molecules in its structure have relatively "positive" parts that attract electrons and relatively "negative" parts that repel electrons. CO2 has some of these "polar" characteristics, so it is attracted to the membrane, dissolving into it as salt dissolves into a glass of water.

The molecules diffuse through the membrane at a rate that increases as more polar molecules become entrenched in the rubbery polymer, the researchers found. Even when the membrane is saturated with impurities, the polar properties continue to funnel the undesirable molecules along at a faster rate than for hydrogen, retaining most hydrogen molecules on the upstream side.

Unlike other methods, the new "reverse-selective" process can capture hydrogen at a pressure close to that of the incoming gas. This is a primary advantage for the membrane because high pressure is important for transport of the gas, and many applications, yet adds significant costs.

"The best you can do in terms of pressurization for any of these processes is make hydrogen at or near feed pressure," said Freeman. Conventional membranes, which would allow hydrogen to pass through while holding other gasses back, would decrease hydrogen pressure, he added.

While other hydrogen extraction methods still have advantages, the researchers believe there is great potential for future approaches to be hybrid processes that incorporate the new membrane within established systems.



Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "High-tech Sieve Sifts For Hydrogen." ScienceDaily. ScienceDaily, 3 February 2006. <www.sciencedaily.com/releases/2006/02/060203183509.htm>.
National Science Foundation. (2006, February 3). High-tech Sieve Sifts For Hydrogen. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2006/02/060203183509.htm
National Science Foundation. "High-tech Sieve Sifts For Hydrogen." ScienceDaily. www.sciencedaily.com/releases/2006/02/060203183509.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins