Featured Research

from universities, journals, and other organizations

When Good DNA Goes Bad: 'Backward' DNA Leads To DNA Breaks Associated With Leukemia, Study Finds

Date:
February 12, 2006
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
When otherwise normal DNA adopts an unusual shape called Z-DNA, it can lead to the kind of genetic instability associated with cancers such as leukemia and lymphoma, according to a study by researchers at The University of Texas M. D. Anderson Cancer Center.

When otherwise normal DNA adopts an unusual shape called Z-DNA, it can lead to the kind of genetic instability associated with cancers such as leukemia and lymphoma, according to a study by researchers at The University of Texas M. D. Anderson Cancer Center.

The study, issued in advance of the Feb. 21 edition of the Proceedings of the National Academy of Sciences, demonstrates for the first time that the oddly shaped DNA can cause DNA breaks in mammalian cells. Interestingly, these sequences prone to forming Z-DNA are often found in genetic “hot spots,” areas of DNA known to be prone to the genetic rearrangements associated with cancer. About 90 percent of patients with Burkitt’s lymphoma, for example, have DNA breaks that map to regions with the potential to form these odd DNA structures.

“Our study shows that DNA itself can act as a mutagen, resulting in genetic instability,” says Karen Vasquez, Ph.D., lead author of the study and assistant professor of carcinogenesis at
M. D. Anderson’s Science Park Research Division, Smithville, Texas. “The discovery opens up a new field of inquiry into the role of DNA shape in genomic instability and cancer.”

Imagine untwisting the DNA ladder and then winding it up the other way. The result is a twisted mess with segments jutting out left and right, and the all important base pairs that hold the DNA code zigzagging in a jagged zipper shape. Scientists call this left-hand twist Z-DNA. This is a far cry from the graceful right-hand twisted helix that has become an iconic symbol of biology. It just doesn’t look right, and it doesn’t act right either, according to Vasquez. This awkward shape puts strain on the DNA, and as Vasquez and her colleagues show, can cause the DNA molecule to break completely apart.

Scientists have known for many years that DNA can take shapes other than the typical twisted ladder form, but they weren’t sure how often these alternate shapes occur inside cells.

Researchers who study these shapes had previously shown that Z-DNA can form only at certain DNA sequences because the shapes of the bases themselves contribute to Z-DNA formation. For example, the sequence CG repeated more than 14 times in a row is prone to forming Z-DNA, while the sequence AT is not as efficient at forming this structure. Analysis of the genome reveals that DNA sequences prone to forming the Z-DNA structure occur in 0.25 percent of the genome, according to Vasquez.

She and her colleagues decided to find out whether Z-DNA itself had any effect on the DNA stability. To do that, post-doctoral fellow Guliang Wang, Ph.D., made pieces of DNA designed to form the Z-DNA shape. The researchers then introduced these segments of DNA, called plasmids, into bacterial cells and human cells in the laboratory. They then broke apart the cells and examined what happens to the DNA. They found that in bacterial cells, the Z-DNA caused small deletions or insertions of one or two DNA bases. But in human cells, the introduced Z-DNA led to large-scale deletions and rearrangements of the DNA molecule.

“We discovered that bacterial cells and human cells process the Z-DNA in different ways,” she says. “We aren’t sure why, but we think that the DNA repair machinery may be involved in processing the Z-DNA structure differently in bacteria versus human cells.”

Since formation of Z-DNA is naturally occurring and can exist in the genome, the scientists next want to understand why cells can sometimes process the structure without creating double-stranded breaks. They also want to know why certain places in the genome become “hot spots” for these breaks, while other seemingly similar areas do not.

“If we could understand the players involved in this process, we might be able to prevent the generation of these breaks,” says Vasquez. “For example, if certain types of cell stress lead to breaks, we might be able to find ways to reduce those stresses and prevent breaks.”

Senior research assistant Laura Christensen also contributed to the research. The study was supported by grants from the National Cancer Institute and the National Institute of Environmental Health Sciences, as well as an Odyssey fellowship to Guliang Wang from M. D. Anderson Cancer Center.


Story Source:

The above story is based on materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas M. D. Anderson Cancer Center. "When Good DNA Goes Bad: 'Backward' DNA Leads To DNA Breaks Associated With Leukemia, Study Finds." ScienceDaily. ScienceDaily, 12 February 2006. <www.sciencedaily.com/releases/2006/02/060212181749.htm>.
University of Texas M. D. Anderson Cancer Center. (2006, February 12). When Good DNA Goes Bad: 'Backward' DNA Leads To DNA Breaks Associated With Leukemia, Study Finds. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2006/02/060212181749.htm
University of Texas M. D. Anderson Cancer Center. "When Good DNA Goes Bad: 'Backward' DNA Leads To DNA Breaks Associated With Leukemia, Study Finds." ScienceDaily. www.sciencedaily.com/releases/2006/02/060212181749.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins