Featured Research

from universities, journals, and other organizations

Researchers Unlock How Cells Determine Their Functions

Date:
February 27, 2006
Source:
University of California - Riverside
Summary:
Researchers at the University of California, Riverside have discovered a molecular mechanism directing the fate and function of cells during animal development. The findings could hold promise for the advancement of cancer and stem-cell research.

At left is a schematic showing how the Ash1 epigenetic activator interacts with the DNA of the fruit fly drosophila. At right is Ultrabithorax expression in the fruit fly wing.
Credit: Image courtesy of University of California - Riverside

Researchers at the University of California, Riverside have discovered a molecular mechanism that directs the fate and function of cells during animal development. The findings could hold promise for the advancement of cancer and stem-cell research.

Related Articles


The research is published in the Feb. 24 edition of the journal Science. UCR Biochemistry Professor Frank Sauer, with German colleague Elisabeth Kremmer of the Institut für Molekulare Immunologie in Munich, and fellow UCR researchers Tilman Sanchez-Elsner and Dawei Gou authored the paper titled, Noncoding RNAs of Trithorax Response Elements Recruit Dosphila Ash1 to Ultrabithorax.
The paper explains how proteins, known as epigenetic activators (such as Ash1 from the fruit fly Drosophila), bind to their target DNA and activate genes that determine what function a cell will have in the body.

“The fact that these epigenetic activators, such as Ash1, turn on the expression of specific target genes has been known for some time. However, the mechanisms by which epigenetic activators recognize and bind these target genes was not yet known” Sauer pointed out.

“What we were able to show is that the epigenetic activator Ash1is recruited to a target gene through cell-type specific non-coding RNA” he said.

The paper examined how the activator Ash1 binds to target DNA elements, known as Trithorax-reponse elements (TREs), located in the gene Ultrabithorax (Ubx). Non-coding RNA is produced by and retained at the TREs of Ubx, and helps activate the expression of the Ubx gene by attracting Ash1 to the TREs. The transgenic transcription of non-coding TRE RNA can change the type and function of cells.

“As a result, we can now use non-coding RNAs as tools to actively determine cell fate,” Sauer said.

“Over the last few years, researchers have focused on how noncoding RNAs silence genes,” said Anthony Carter, of the National Institute of General Medical Sciences, which partially funded the research. “Dr. Sauer’s work has revealed that noncoding RNAs have a broader range of functions than was previously known, and suggests a model for how they can help activate, rather than silence, a key regulator of animal development.”

The research was funded in part through the National Institute of General Medical Sciences at the National Institutes of Health in Bethesda, Md, the Volkswagen Stiftung of Hannover, Germany, Deutsche Forschungsgenmeinschaft (DFG) Transregio 5 and a Postdoctoral fellowship from the (DFG).


Story Source:

The above story is based on materials provided by University of California - Riverside. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Riverside. "Researchers Unlock How Cells Determine Their Functions." ScienceDaily. ScienceDaily, 27 February 2006. <www.sciencedaily.com/releases/2006/02/060227184539.htm>.
University of California - Riverside. (2006, February 27). Researchers Unlock How Cells Determine Their Functions. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2006/02/060227184539.htm
University of California - Riverside. "Researchers Unlock How Cells Determine Their Functions." ScienceDaily. www.sciencedaily.com/releases/2006/02/060227184539.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com
What's Different About This Latest Ebola Vaccine

What's Different About This Latest Ebola Vaccine

Newsy (Mar. 26, 2015) — A whole virus Ebola vaccine has been shown to protect monkeys exposed to the virus. Here&apos;s what&apos;s different about this vaccine. Video provided by Newsy
Powered by NewsLook.com
HIV Outbreak Prompts Public Health Emergency In Indiana

HIV Outbreak Prompts Public Health Emergency In Indiana

Newsy (Mar. 26, 2015) — Indiana Gov. Mike Pence says he will bring additional state resources to help stop the epidemic. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins