Featured Research

from universities, journals, and other organizations

New Class Of Compounds Promise Better Drugs, Clean Energy

Date:
March 13, 2006
Source:
Brown University
Summary:
Brown University chemists have created a new class of compounds that promise to produce prescription drugs more cheaply as well as to provide models for hydrogen storage -- a key feature for clean energy production and use. The work has landed in top journals, including a cover of Chemical Communications this month, and has prompted two patent filings.

A model of two rhodium quinones, shown here in the center as the blue and silver structures.
Credit: Image : Jeffrey Reingold, Brown University

By combining a common organic compound with a rare metal, a team of Brown University chemists has created a new class of molecules that have potentially important applications for the pharmaceutical, chemical and energy industries.

To create the mixture, scientists working in the laboratory of Dwight Sweigart, a Brown professor of chemistry, combined two compounds. One is hydroquinone, pale organic crystals critical for many biological processes as well as the manufacture of everything from skin bleaching creams to high-performance plastics. The other is the precious metal rhodium. The resulting reaction produced rhodium quinones.

“This mixture has marvelous properties,” Sweigart said. “Rhodium quinones are very fast and efficient catalysts. They also have pores, or channels, that act like a sponge, giving them the ability to store gases. The secret is rhodium. It’s the Superman of elements.”

Rhodium is lighter than platinum, rarer than gold, and, at about $3,000 an ounce, the priciest of precious metals. The silvery white substance is prized as a potent, long-lasting catalyst and is used to concoct antifreeze, detergents and other industrial chemicals as well to make automotive catalytic converters, which cut down on air pollution. Rhodium is also the most reflective element on the periodic table and can be found in searchlights, dental mirrors, and giant microscopes known as synchotrons.

Discovery of rhodium quinones has landed Sweigart and his research team in premier chemistry journals, including the Journal of the American Chemical Society and Angewandte Chemie, the publication of the German Chemical Society, which put the compounds on its December cover. This month, the research landed on another cover: the British journal Chemical Communications.

Together, the articles outline potential applications of rhodium quinones:

  • Catalysis – Rhodium quinones are highly effective catalysts for so-called carbon-carbon coupling reactions. These reactions are essential to make drugs for cancer, depression and other diseases. Rhodium catalysts promise a conceptual advance over current production systems by boosting the amount of end product and by making new drugs possible. Sweigart is currently working with William Trenkle, an assistant professor of chemistry at Brown, and graduate student Julia Barkin to use the compounds to make drugs for asthma, depression and other conditions. Through Brown, the pair filed preliminary patents on the use of rhodium quinones as catalysts.
  • Synthesis – Rhodium quinones can also be used to make a new class of organolithium reagents. These compounds are used to make a wide variety of industrial chemicals, such as polymers and plastics, and are among the most important reagents available for the synthesis of new materials. The rhodium quinone-based class of organolithiums promises to improve these reagents by allowing the incorporation of active transition metals.
  • Storage – Energy experts hope that hydrogen will eventually replace fossil fuels as a clean source of power. The promise: Convert the gas to electricity, leaving water as the only byproduct. But to create this “hydrogen economy,” major hurdles must be overcome to make, transport and store hydrogen. Sweigart and his team have shown that rhodium quinones, in a solid state, feature channels suitable for storage of hydrogen and other gases, and might be used in fuel cells to generate electricity.

“After routinely working until 2 or 3 a.m. in the lab, creating the new compound is extremely exciting,” said Jeffrey Reingold, a graduate student working in the Sweigart lab. “The rhodium and the quinone parts of the molecule each contribute unique characteristics to generate a powerful new reagent with enormous potential. Much of our future research will focus on the development of this fascinating chemistry.”

The research team also includes chemistry graduate student Sang Bok Kim, professor emeritus of chemistry Gene Carpenter, and Seung Uk Son, a former Brown post-doctoral research fellow and current assistant professor of chemistry at Sungkyunkwan University.

The National Science Foundation and the Petroleum Research Fund funded the work.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "New Class Of Compounds Promise Better Drugs, Clean Energy." ScienceDaily. ScienceDaily, 13 March 2006. <www.sciencedaily.com/releases/2006/03/060306213121.htm>.
Brown University. (2006, March 13). New Class Of Compounds Promise Better Drugs, Clean Energy. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2006/03/060306213121.htm
Brown University. "New Class Of Compounds Promise Better Drugs, Clean Energy." ScienceDaily. www.sciencedaily.com/releases/2006/03/060306213121.htm (accessed September 1, 2014).

Share This




More Matter & Energy News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins