Featured Research

from universities, journals, and other organizations

Studies Suggest New Targets For Tuberculosis Treatments

Date:
March 7, 2006
Source:
Brookhaven National Laboratory
Summary:
With the hope of designing more effective treatments for tuberculosis (TB), scientists from the U.S. Department of Energy's Brookhaven National Laboratory and collaborating institutions have published the first detailed reports on the biochemistry and structure of a protein-cleaving complex that is essential to the TB bacterium's survival.

Ribbon diagram (left) showing seven-fold symmetry in the top view of the cylindrical TB proteasome, as revealed by x-ray crystallography. The core looks open, however, cryo-electron microscopy images (green structure, center) reveal a closed end, suggesting the structure is gated. Side views (right) also reveal that the structure is symmetrical top to bottom. Inside the structure there is a large chamber where the denatured proteins are cleaved.
Credit: Image courtesy of DOE/Brookhaven National Laboratory

With the hope of designing more effective treatments for tuberculosis (TB), scientists from the U.S. Department of Energy’s Brookhaven National Laboratory and collaborating institutions have published the first detailed reports on the biochemistry and structure of a protein-cleaving complex that is essential to the TB bacterium’s survival. The research is published in two papers in the March 2006 issue of Molecular Microbiology, which features a rendition of the “proteasome” structure on its cover.

“Understanding the structure and biochemistry of this proteasome, and how it is different from those found in human cells, could greatly improve prospects for developing specific proteasome-based anti-tuberculosis treatments,” said biophysicist Huilin Li, who led Brookhaven’s role in the research.

Mycobacterium tuberculosis, the bacterium that causes TB, infects one person in three worldwide. In most infected people, who remain symptom-free, the bacterium is kept in check within immune system cells known as macrophages by compounds such as nitric oxide that kill or disable most bacteria. The current hypothesis is that the compounds work by damaging or destroying proteins, and the accumulated damaged proteins kill the cells if not removed.

The current studies reveal that TB bacteria have a sophisticated way to remove the damaged proteins — a protein-cleaving complex known as a proteasome — with wide specificity for degrading protein parts. This protein cleanup mechanism allows Mycobacterium tuberculosis to remain in macrophages, and possibly go on to cause active TB infections. With details revealed, it could also serve as a target for new anti-TB drugs.

“If we could find a way to specifically inhibit the activity of this Mycobacterium tuberculosis proteasome, then we might have a new, effective treatment for TB,” said Li. “Such a treatment might even eradicate TB microbes from infected individuals who show no signs of infection.”

One complicating factor is that human cells also contain proteasomes for degrading unneeded proteins. This process is essential for human cell survival. So any drug targeting the TB proteasome would have to be extremely specific. This was one reason for conducting such detailed structural and biochemical studies, to try to identify the unique characteristics that would allow such a targeted drug design.

In addition, the scientists conducted studies to see how an analog for a newly approved anti-myeloma drug that targets human proteasomes binds to the TB proteasome. These studies revealed highly specific details of the proteasome active site and mechanism, which will be invaluable to designing TB specific inhibitors.

The proteasome structure was revealed by Guiqing Hu and collaborators using cryo electron microscopy in Brookhaven Lab’s Biology Department and by x-ray crystallography at the Lab’s National Synchrotron Light Source. It is a cylindrical gated structure, which suggests that it requires an activator that has yet to be investigated.

The biochemical studies were conducted at Weill Medical College of Cornell University by Gang Lin in a group led by Carl Nathan. Other collaborating institutions included the Max Planck Institute of Biochemistry, Cold Spring Harbor Laboratory, and Millennium Pharmaceuticals.

This research was funded by the Office of Biological and Environmental Research within the U.S. Department of Energy’s Office of Science, the National Institutes of Health, and Brookhaven’s Laboratory Directed Research and Development program.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Studies Suggest New Targets For Tuberculosis Treatments." ScienceDaily. ScienceDaily, 7 March 2006. <www.sciencedaily.com/releases/2006/03/060306214040.htm>.
Brookhaven National Laboratory. (2006, March 7). Studies Suggest New Targets For Tuberculosis Treatments. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2006/03/060306214040.htm
Brookhaven National Laboratory. "Studies Suggest New Targets For Tuberculosis Treatments." ScienceDaily. www.sciencedaily.com/releases/2006/03/060306214040.htm (accessed September 15, 2014).

Share This



More Health & Medicine News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Ministers and Experts Meet to Discuss Ebola Reponse

EU Ministers and Experts Meet to Discuss Ebola Reponse

AFP (Sep. 15, 2014) The European Commission met on Monday to coordinate aid that the EU can offer to African countries affected by the Ebola outbreak. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
Despite The Risks, Antibiotics Still Overprescribed For Kids

Despite The Risks, Antibiotics Still Overprescribed For Kids

Newsy (Sep. 15, 2014) A new study finds children are prescribed antibiotics twice as often as is necessary. Video provided by Newsy
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Respiratory Virus Spreads To Northeast, Now In 21 States

Respiratory Virus Spreads To Northeast, Now In 21 States

Newsy (Sep. 14, 2014) The respiratory virus Enterovirus D68, which targets children, has spread from the Midwest to 21 states. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins