Featured Research

from universities, journals, and other organizations

DNA From The Deep

Date:
March 9, 2006
Source:
Monterey Bay Aquarium Research Institute
Summary:
What kinds of microbes live beneath the surface of the open ocean? What are they doing down there? These are the sorts of questions that MBARI researcher Chris Preston has been trying to answer in her research. But instead of using a microscope (even under a good scope, most bacteria just look like little dots or squiggles), Preston analyzes DNA from marine microbes to determine what types are present and what biochemical tricks they use to survive.

Thousands of different types of microbes inhabit every cubic centimeter of seawater. Although a few types of microbes been studied in detail, DNA studies will help scientists learn about the many species that have yet to be identified.
Credit: Image : Ed DeLong (c) 2000 MBARI

What kinds of microbes live beneath the surface of the open ocean? What are they doing down there? These are the sorts of questions that MBARI researcher Chris Preston has been trying to answer in her research. But instead of using a microscope (even under a good scope, most bacteria just look like little dots or squiggles), Preston analyzes DNA from marine microbes to determine what types are present and what biochemical tricks they use to survive.

Related Articles


Working with microbiologist Ed DeLong and his team at MIT, and with David Karl at the University of Hawaii, Preston recently coauthored a paper that describes the DNA of microbe communities at seven different depths in the tropical Pacific Ocean, from the surface down to 4,000 meters (about 13,000 feet). This paper was published in the January 27, 2006 issue of Science magazine.

Smaller but more numerous than marine algae, marine microbes such as bacteria and blue-green algae have huge effects on ocean chemistry and possibly even climate. Many of these organisms can't be cultured in the laboratory, and have only recently been discovered using DNA analysis. Probably thousands of additional species have yet to be discovered or named.

Even though only a small fraction of marine microbes have been studied in detail, DeLong, Preston, and others have learned a lot by analyzing the combined DNA of all the marine microbes in a sample of seawater. The resulting data can give scientists a 'birds-eye-view' of entire microbial communities. DeLong first pioneered this technique about 12 years ago. In the last few years, however, technological advances have made it possible for scientists to sequence really large quantities of DNA in a matter of weeks or months. This allows biologists to study not just microbial communities as a whole, but individual groups of microbes within those communities.

For this project, Preston worked with scientists at the University of Hawaii to collect water from the open ocean about 100 kilometers (60 miles) north of the island of Oahu. This spot, the Hawaii Ocean Time Series station, was chosen because it is far from any terrestrial influences, yet its chemistry and (non-microbial) biology are relatively well studied . Because concentrations of microbes were so low in this 'oceanic desert' area, Preston and fellow MBARI researcher Lynne Christianson had to spend five to six hours filtering up to 600 liters (160 gallons) of seawater for each sample, in order to obtain enough microbial DNA for analysis.

One of the researchers' overall goals was to determine how the microbes near the surface are different from those that live thousands of meters down. Not surprisingly, in samples from the sunlit waters within about 100 meters of the surface, the researchers found a lot of microbial DNA sequences that were associated with photosynthesis. This means many microbes in these waters were probably using sunlight as a source of energy. Surface samples also contained microbial DNA that was associated with movement and propulsion. This suggests that movement is important for these microbes, perhaps helping them follow chemical gradients or move from food particle to food particle.

In contrast, DNA from microbes in deeper waters suggests many survive by attaching to and breaking down particles of organic material. Such particles continually sink down from the surface waters into the deep sea, providing food for many organisms in the form of 'marine snow.'

Perhaps the most surprising finding of this study was the large amount of DNA that came from viruses, especially in near-surface waters. Since the researchers excluded free-living viruses from their initial sample, they believe that this viral DNA must have come from viruses that had infected living bacteria. Such viruses reproduce within bacterial cells, and can actually transfer DNA from one bacterium to another. This makes the already complicated process of analyzing microbial DNA even more challenging.

Although the paper in Science describes some of the initial findings from DeLong's team, other researchers will be analyzing their DNA sequences for years to come. As Preston explains, 'One thing that other researchers can do is to compare our sequences with those from microbial communities in other regions of the ocean, in soil, in salty brines, or in fresh water environments. They may see similar metabolic pathways or find entirely new ones.'

In fact, just a few years ago DeLong and his colleagues did just this. They compared DNA from marine microbes to DNA from salt pond microbes (archaea) and discovered a new type of photosynthetic pigment, which they called proteorhodopsin. This eventually led to the discovery that marine microbes can obtain energy from the sun through photosynthesis. Similar breakthroughs may emerge from detailed analyses of Preston and DeLong's seawater samples from the tropical Pacific.


Story Source:

The above story is based on materials provided by Monterey Bay Aquarium Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Monterey Bay Aquarium Research Institute. "DNA From The Deep." ScienceDaily. ScienceDaily, 9 March 2006. <www.sciencedaily.com/releases/2006/03/060308211625.htm>.
Monterey Bay Aquarium Research Institute. (2006, March 9). DNA From The Deep. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2006/03/060308211625.htm
Monterey Bay Aquarium Research Institute. "DNA From The Deep." ScienceDaily. www.sciencedaily.com/releases/2006/03/060308211625.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) — Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) — One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) — Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins