Featured Research

from universities, journals, and other organizations

'Yanking' Chemical Bonds With Molecular Wires Speeds Reactions

Date:
March 15, 2006
Source:
Duke University
Summary:
Using a chain of molecules as an infinitesimal lanyard to tug on a chemical bond about to break, Duke University chemists have found they can speed a complex chemical reaction.

Using a chain of molecules as an infinitesimal lanyard to tug on a chemical bond about to break, Duke University chemists have found they can speed a complex chemical reaction.

Their unusual manipulative technique can reveal previously unknown details about the evolution of such two-step bond reactions, said assistant Duke chemistry professor Stephen Craig. It might ultimately aid efforts to develop new kinds of polymers that can "heal" themselves after tearing, he said.

Craig, current doctoral student Farrell Kersey and former graduate student Wayne Yount described their discoveries in a research paper published online Friday, March 3, 2006, in the Journal of the American Chemical Society (JACS). The work was funded by the National Science Foundation.

"We probed a reaction in which a bond was being made and a bond was being broken by pulling on the bond being broken with an atomic force microscope (AFM)," said Craig. An AFM detects forces or creates images of surfaces at molecular scales by mechanically probing with a flexible microscopic cantilevered tip.

In their experiments, Craig's group used an AFM tip to exert almost infinitesimally small tugs on a molecular complex made of pyridine and the metal palladium.

The researchers dangled the pyridine-palladium complex in space as if it were part of a molecular trapeze act, by attaching trapeze "wires" made of atomic chains of the molecule polyethylene glycol (PEG). One PEG chain connected the dangling pyridine-palladium to the AFM's tip. A separate PEG "wire" anchored the complex underneath onto an underlying surface substrate.

When the AFM's flexible tip pivoted upward, it pulled on the bond linking the pyridine to the palladium. "This is almost like spring-loading that bond," Craig said.

"As a bond breaks, it stretches," he said. "The distance between the atoms gets further and further. And we could infer from the behavior of this experiment that the rate of the reaction speeded up."

Since the whole array was submerged in a solution of the chemical solvent DMSO, the bond was already under pressure before the AFM began its work, he said.

"Because this solvent was present in excessive amounts, it wanted to form a bond with the palladium," he said. But the nature of that reaction requires the DMSO-palladium bond to form first before the palladium and pyridine could sever their connection, he added.

The Duke chemists sought to study how the sequence of bond forming and breaking would be affected if they artificially stretched the palladium-pyridine bond towards the breaking point.

They found that, although the pace of the reaction was accelerated, the order of bond forming and breaking did not change. "We could spring-load the bond enough so it sought to break very quickly. But the reaction still waited for the DMSO to bond to the palladium before the pyridine came off," he said.

The researchers also found that, when they repeated the experiment with a palladium-pyridine complex incorporating a modified pyridine, the response to pulling on the bond was the same even though the energy levels needed for bond-breaking were different.

These findings "are absolutely consistent with some very fundamental notions about the way energy is exchanged in chemical reactions," Craig said. "But to my knowledge it's not an experiment that anyone else has done to test whether that was the case. This could lead to a more sophisticated understanding of the way reactions happen at their most fundamental levels."

According to Craig, additional studies into the order and consequences of chemical bond-breaking might also aid the discovery of new materials. "Someone might try to design certain types of molecules that would respond to mechanical stresses by breaking in a way that's desirable," he said.

For example, he said such research might aid researchers like him who work on "self-healing polymers." Those are molecules in the early stages of development that would release chemicals to repair newly formed tears and cracks.



Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "'Yanking' Chemical Bonds With Molecular Wires Speeds Reactions." ScienceDaily. ScienceDaily, 15 March 2006. <www.sciencedaily.com/releases/2006/03/060314164426.htm>.
Duke University. (2006, March 15). 'Yanking' Chemical Bonds With Molecular Wires Speeds Reactions. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2006/03/060314164426.htm
Duke University. "'Yanking' Chemical Bonds With Molecular Wires Speeds Reactions." ScienceDaily. www.sciencedaily.com/releases/2006/03/060314164426.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins